digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Pathlines of fluid particles around the axis (dashed line) of an ideal irrotational vortex. (See animation)

In fluid dynamics, a vortex is a region within a fluid where the flow is mostly a spinning motion about an imaginary axis, straight or curved. That motion pattern is called a vortical flow.[1][2] (The original and most common plural of "vortex" is vortices,[3] although vortexes is often used too.[4])

Vortices form in stirred fluids, including liquids, gases, and plasmas. Some common examples are smoke rings, the whirlpools often seen in the wake of boats and paddles, and the winds surrounding hurricanes, tornadoes and dust devils. Vortices form in the wake of airplanes and are prominent features of Jupiter's atmosphere.

Vortices are a major component of turbulent flow. In the absence of external forces, viscous friction within the fluid tends to organize the flow into a collection of so-called irrotational vortices. Within such a vortex, the fluid's velocity is greatest next to the imaginary axis, and decreases in inverse proportion to the distance from it. The vorticity (the curl of the fluid's velocity) is very high in a core region surrounding the axis, and nearly zero in the rest of the vortex; while the pressure drops sharply as one approaches that region.

Once formed, vortices can move, stretch, twist, and interact in complex ways. A moving vortex carries with it some angular and linear momentum, energy, and mass. In a stationary vortex, the streamlines and pathlines are closed. In a moving or evolving vortex the streamlines and pathlines are usually spirals.

Properties

Crow Instability contrail demonstrates vortex

Vorticity

A key concept in the dynamics of vortices is the vorticity, a vector that describes the local rotary motion at a point in the fluid, as would be perceived by an observer that moves along with it. Conceptually, the vorticity could be observed by placing a tiny rough ball at the point in question, free to move with the fluid, and observing how it rotates about its center. The direction of the vorticity vector would be the direction of the axis of rotation of this imaginary ball (according to the right-hand rule) while its length would be proportional to the ball's angular velocity. Mathematically, the vorticity is defined as the curl (or rotational) of the velocity field of the fluid, usually denoted by $\vec \omega$ and expressed by the vector analysis formula $\nabla \times \vec{\mathit{u}}$, where $\nabla$ is the nabla operator.[5]

The local rotation measured by the vorticity $\vec \omega$ must not be confused with the angular velocity vector of that portion of the fluid with respect to the external environment or to any fixed axis. In a vortex, in particular, $\vec \omega$ may be opposite to the mean angular velocity vector of the fluid relative to the vortex line.

Vorticity profiles

The vorticity in a vortex depends on how the speed v of the particles varies as the distance r from the axis. There are two important special cases:

• If the fluid rotates like a rigid body – that is, if v increases proportionally to r – a tiny ball carried by the flow would also rotate about its center as if it were part of that rigid body. In this case, $\vec \omega$ is the same everywhere: its direction is parallel to the spin axis, and its magnitude is twice the angular velocity of the whole fluid.
 Rotational (rigid-body) vortex $\vec \omega_{vorticity}=\frac{v_{\theta}}{r}+\frac{dv_{\theta}}{dr}=2\vec \omega_{ang. velocity}$
• If the particle speed v is inversely proportional to the distance r, then the imaginary test ball would not rotate over itself; it would maintain the same orientation while moving in a circle around the vortex line. In this case the vorticity $\vec \omega$ is zero at any point not on that line, and the flow is said to be irrotational.
 Irrotational vortex $\vec \omega_{vorticity}=\frac{v_{\theta}}{r}+\frac{dv_{\theta}}{dr}=0\vec \omega_{ang. velocity}$

Irrotational vortices

In the absence of external forces, a vortex usually evolves fairly quickly toward the irrotational flow pattern, where the flow velocity v is inversely proportional to the distance r. For that reason, irrotational vortices are also called free vortices.

For an irrotational vortex, the circulation is zero along any closed contour that does not enclose the vortex axis and has a fixed value, $\Gamma$, for any contour that does enclose the axis once.[6] The tangential component of the particle velocity is then $v_{\theta} = \Gamma/(2 \pi r)$. The angular momentum per unit mass relative to the vortex axis is therefore constant, $r v_{\theta} = \Gamma/(2 \pi)$.

However, the ideal irrotational vortex flow is not physically realizable, since it would imply that the particle speed (and hence the force needed to keep particles in their circular paths) would grow without bound as one approaches the vortex line. Indeed, in real vortices there is always a core region surrounding the axis where the particle velocity stops increasing and then decreases to zero as r goes to zero. Within that region, the flow is no longer irrotational: the vorticity $\vec \omega$ becomes non-zero, with direction roughly parallel to the vortex line. The Rankine vortex is a model that assumes a rigid-body rotational flow where r is less than a fixed distance r0 and irrotational flow outside of the rotational core. The Lamb-Oseen vortex model is an exact solution of the Navier-Stokes equations governing fluid flows and assumes cylindrical symmetry, for which

$v_{\theta} = (1 - e^{-r^2/(4\nu t)})\Gamma/(2 \pi r).$

In an irrotational vortex, fluid moves at different speed in adjacent streamlines, so there is friction and therefore energy loss throughout the vortex, especially near the core.

Rotational vortices

A rotational vortex – one which has non-zero vorticity away from the core – can be maintained indefinitely in that state only through the application of some extra force, that is not generated by the fluid motion itself.

For example, if a water bucket is spun at constant angular speed w about its vertical axis, the water will eventually rotate in rigid-body fashion. The particles will then move along circles, with velocity v equal to wr.[6] In that case, the free surface of the water will assume a parabolic shape.

In this situation, the rigid rotating enclosure provides an extra force, namely an extra pressure gradient in the water, directed inwards, that prevents evolution of the rigid-body flow to the irrotational state.

Vortex geometry

In a stationary vortex, the typical streamline (a line that is everywhere tangent to the velocity vector) is a closed loop surrounding the axis; and each vortex line (a line that is everywhere tangent to the vorticity vector) is roughly parallel to the axis. A surface that is everywhere tangent to both velocity and vorticity is called a vortex tube. In general, vortex tubes are nested around the axis of rotation. The axis itself is one of the vortex lines, a limiting case of a vortex tube with zero diameter.

According to Helmholtz's theorems, a vortex line cannot start or end in the fluid – except momentarily, in non-steady flow, while the vortex is forming or dissipating. In general, vortex lines (in particular, the axis line) are either closed loops or end at the boundary of the fluid. A whirlpool is an example of the latter, namely a vortex in a body of water whose axis ends at the free surface. A vortex tube whose vortex lines are all closed will likewise be a closed torus-like surface. A newly-created vortex will promptly extend and bend so as to eliminate any open-ended vortex lines. For example, when an airplane engine is started, a vortex usually forms ahead of each propeller, or the turbofan of each jet engine. One end of the vortex line is attached to the engine, while the other end usually stretches outs and bends until it reaches the ground.

When vortices are made visible by smoke or ink trails, they may seem to have spiral pathlines or streamlines. However, this appearance is often an illusion and the fluid particles are moving in closed paths. The spiral streaks that are taken to be streamlines are in fact clouds of the marker fluid that originally spanned several streamlines and were stretched into spiral shapes by the non-uniform velocity distribution. This is the case, for example, of the spiral arms of galaxies and hurricanes.

Pressure in a vortex

The fluid motion in a vortex creates a dynamic pressure (in addition to any hydrostatic pressure) that is lowest in the core region, closest to the axis, and increases as one moves away from it, in accordance with Bernoulli's Principle. One can say that it is the gradient of this pressure that forces the fluid to curve around the axis.

In a rigid-body vortex flow of a fluid with constant density, the dynamic pressure is proportional to the square of the distance r from the axis. In a constant gravity field, the free surface of the liquid, if present, is a concave paraboloid.

In an irrotational vortex flow with constant fluid density and cylindrical symmetry, the dynamic pressure varies like PK/r2, where P is the limiting pressure infinitely far from the axis. This formula provides another constraint for the extent of the core, since the pressure cannot be negative. The free surface (if present) dips sharply near the axis line, with depth inversely proportional to r2.

The core of a vortex in air is sometimes visible because of a plume of water vapor caused by condensation in the low pressure and low temperature of the core; the spout of a tornado is a classic example. When a vortex line ends at a boundary surface, the reduced pressure at may also draw matter from that surface into the core. For example, a dust devil is a column of dust picked up by the core of an air vortex attached to the ground. By the same token, a vortex in a body of water that ends at the free surface (like the whirlpool that often forms over a bathtub drain) may draw a column of air down the core. The forward vortex extending from an engine of a parked airplane can suck water and small stones into the core and then into the engine.

Evolution

Vortex created by the passage of an aircraft wing, revealed by colored smoke

Vortices need not be steady-state features; they can move about and change their shape.

In a moving vortex, the particle paths are no longer closed, but are open loopy curves similar to helices or cycloids.

A vortex flow may also be combined with a radial or axial flow pattern. In that case the streamlines and pathlines are not closed curves but spirals or helices, respecively. This is the case in tornadoes and in drain whirlpools. A vortex with helical streamlines is said to be solenoidal.

As long as the effects of viscosity and diffusion are negligible, the fluid in a moving vortex is carried along with it. In particular, the fluid in the core (and matter trapped by it) tends to remain in the core as the vortex moves about. This is a consequence of Helmholtz's second theorem. Thus vortices (unlike surface and pressure waves) can transport mass, energy and momentum over considerable distances compared to their size, with surprisingly little dispersion. This effect is demonstrated by smoke rings and exploited in vortex ring toys and guns.

Two or more vortices that are approximately parallel and circulating in the same direction will attract and eventually merge to form a single vortex, whose circulation will equal the sum of the circulations of the constituent vortices. For example, an airplane wing that is developing lift will create a sheet of small vortices at its trailing edge. These small vortices merge to form a single wingtip vortex, less than one wing chord downstream of that edge. This phenomenon also occurs with other active airfoils, such as propeller blades. On the other hand, two parallel vortices with opposite circulations (such as the two wingtip vortices of an airplane) tend to remain separate.

Vortices contain substantial energy in the circular motion of the fluid. In an ideal fluid this energy can never be dissipated and the vortex would persist forever. However, real fluids exhibit viscosity and this dissipates energy very slowly from the core of the vortex. It is only through dissipation of a vortex due to viscosity that a vortex line can end in the fluid, rather than at the boundary of the fluid.

Two-dimensional modeling

When the particle velocities are constrained to be parallel to a fixed plane, one can ignore the space dimension perpendicular to that plane, and model the flow as a two-dimensional velocity field on that plane. Then the vorticity vector $\vec \omega$ is always perpendicular to that plane, and can be treated as a scalar. This assumption is sometimes made in meteorology, when studying large-scale phenomena like hurricanes.

The behavior of vortices in such contexts is qualitatively different in many ways; for example, it does not allow the stretching of vortices that is often seen in three dimensions.

Further examples

Saturn's hexagon, a cloud vortex at the planet Saturn's north pole.

References

Notes

1. ^ Ting, L. (1991). Viscous vortical flows. Lecture notes in physics. Springer-Verlag. ISBN 3-540-53713-9.
2. ^ Kida, Shigeo (2001). "Life, Structure, and Dynamical Role of Vortical Motion in Turbulence". IUTAM Symposium on Tubes, Sheets and Singularities in Fluid Dynamics. Zakopane, Poland.
3. ^ The Oxford English Dictionary
4. ^ The Merriam Webster Collegiate Dictionary
5. ^ Vallis, Geoffrey (1999). Geostrophic Turbulence: The Macroturbulence of the Atmosphere and Ocean Lecture Notes. Lecture notes. Princeton University. p. 1. Retrieved 2012-09-26.
6. ^ a b Clancy 1975, sub-section 7.5

Other

 1000000 videos foundNext >
 Abraham: THE VORTEX - Esther & Jerry HicksAn excerpt from the DVD: "The Vortex: Where Law of Attraction Assembles All Cooperative Relationships" - a companion to the new book of the same name. Here A... Extraordinary Toroidal VorticesExtraordinary and beautiful examples of toroidal vortices produced by dolphins, beluga whales, humpback whales, volcanoes, hydrogen/atomic bombs, and Man. A ... Abraham Hicks -- What is VortexThe Teachings of Abraham- Esther and Jerry Hicks http://www.abraham-hicks.com http://youtu.be/0uT12A-wQtM http://youtu.be/_bhxYZIJT-s http://youtu.be/M_u1aeH... Flowing Quietly into the Vortex - CREATE A HAPPIER YOU! - Abraham - Esther and Jerry HicksFlowing Quietly into the Vortex - CREATE A HAPPIER YOU! - Abraham - Esther and Jerry Hicks Esther Hicks is an American inspirational speaker and best-selling... Potter Puppet Pals: The Vortexhttp://www.potterpuppetpals.com Internal power conflicts in Hogwarts. Who will emerge the victor? Harry Potter. Created by Neil and Emmy Cicierega, with pupp... Abraham: I'M IN THE VORTEX - Esther & Jerry HicksAbraham - as translated by Esther Hicks - recently gave the definitive explanation of what they mean when they talk about alignment with Source Energy. At th... Vortex Cannon! - Bang Goes the Theory Preview - BBC Onehttp://www.bbc.co.uk/bang Jem Stansfield builds a vortex cannon to blow a house of bricks over. More about this episode: http://www.bbc.co.uk/programmes/b00l... Weekend Project: How to Make a Vortex CannonShoot rings of smoke across the room with a Vortex Cannon! Abraham-Hicks - How Does Being In The Vortex Feel?This amazing trip into the vortex was recorded at the Boston MA Abraham-Hicks workshop on 6/20/09 http://www.abraham-hickslawofattraction.com/lawofattraction... Tristam - The Vortex [FREE]FREE download link: http://soundcloud.com/theofficialtristam/tristam-the-vortex like my facebook? :)
 1000000 videos foundNext >
 21370 news items
 The Jets' Quarterback Vortex Has Sanchez's Head Spinning New York Times Thu, 16 May 2013 18:15:26 -0700 FLORHAM PARK, N.J. — David Garrard's locker contained a football, a couple of pairs of sandals and some deodorant. A few workout shirts hung on a bar, and a Jets hat rested on a shelf. It looked as if he had stepped away for a few minutes, to take a ... Mysterious Vortex Reported To Street-fixing Website In Brighton, UK Huffington Post Tue, 14 May 2013 06:52:14 -0700 Either someone in Brighton, U.K., has been watching too much Doctor Who or the city has a serious wormhole problem. A concerned resident recently reported that a “wormhole or vortex” had opened up on Montreal Road -- a "portal to other times, places ... From the Vortex to the Leviathan: Canada's Wonderland opens for another season Globe and Mail Sun, 19 May 2013 19:06:31 -0700 Oops, something bad just happened, don't worry, I'm sure it is our fault. If you think you need flash please use this button Get Adobe Flash player to get it and come back to see the ad in front of this gallery. If you don't want to do that just use ... Real Estate Weekly Vortex Group celebrates anniversary with expansion plan Real Estate Weekly Wed, 15 May 2013 10:25:57 -0700 The Vortex Group, a boutique commercial real estate firm, is celebrating ten years in business with news of an expansion. The company has negotiated for over 2.5 million square feet of office space throughout New York City in the past decade. “I ... 29 Palms | Desert Vortex News Desert Vortex Fri, 17 May 2013 15:39:41 -0700 Desert Vortex News is dedicated to investigative reporting in the Coachella Valley and the hi-desert regions of California. We cover desert communities in the eastern territories of both Riverside and San Bernardino Counties. The team pursues in-depth, ... NPR (blog) Saturn Shows Off A Massive Spinning Vortex: 'The Rose' NPR (blog) Mon, 29 Apr 2013 16:16:01 -0700 NASA is calling it "The Rose." By any other name, it's a mammoth storm on Saturn's north pole. Its eye spans an estimated 1,250 miles — 20 times the size of an average hurricane's eye on Earth. Winds in the Saturn storm's eye wall are believed to be ... TNT Magazine Brighton resident 'discovers vortex to another dimension' Digital Spy Mon, 13 May 2013 22:05:21 -0700 The person reported the May 2 sighting on the Fix My Street website, writing: "I was recently walking my affenpinscher (a toy breed of dog) around the Hanover area of Brighton when I noticed that a wormhole or vortex has opened up on Montreal Road. Daily Mail Whirlpool Video: Vortex In Latvian River Devours All That Enters - Huffington Post Huffington Post Wed, 24 Apr 2013 10:04:07 -0700 In 1841, Edgar Allan Poe referred to a maelstrom, or powerful whirlpool in the ocean, as a "whole sea ... lashed into ungovernable fury." Now 172 years later, a YouTube video titled "Amazing monstrous whirlpool" gives gravity to Poe's words, though ...
 Limit to books that you can completely read online Include partial books (book previews) .gsc-branding { display:block; }

Oops, we seem to be having trouble contacting Twitter