digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

In statistics, stratified sampling is a method of sampling from a population.

In statistical surveys, when subpopulations within an overall population vary, it is advantageous to sample each subpopulation (stratum) independently. Stratification is the process of dividing members of the population into homogeneous subgroups before sampling. The strata should be mutually exclusive: every element in the population must be assigned to only one stratum. The strata should also be collectively exhaustive: no population element can be excluded. Then simple random sampling or systematic sampling is applied within each stratum. This often improves the representativeness of the sample by reducing sampling error. It can produce a weighted mean that has less variability than the arithmetic mean of a simple random sample of the population.

In computational statistics, stratified sampling is a method of variance reduction when Monte Carlo methods are used to estimate population statistics from a known population.

## Stratified sampling strategies

1. Proportionate allocation uses a sampling fraction in each of the strata that is proportional to that of the total population. For instance, if the population X consists of m in the male stratum and f in the female stratum (where m + f = X), then the relative size of the two samples (x1 = m/K males, x2 = f/K females) should reflect this proportion.
2. Optimum allocation (or Disproportionate allocation) - Each stratum is proportionate to the standard deviation of the distribution of the variable. Larger samples are taken in the strata with the greatest variability to generate the least possible sampling variance.

Stratified sampling ensures that at least one observation is picked from each of the strata, even if probability of it being selected is far less than 1. Hence the statistical properties of the population may not be preserved if there are thin strata. A thumbrule that is used to ensure this is that the population should consist of no more than six strata, but depending on special cases the rule can change - for example if there are 100 strata each with 1 million observations, it is perfectly fine to do a 10% stratified sampling on them.

A real-world example of using stratified sampling would be for a political survey. If the respondents needed to reflect the diversity of the population, the researcher would specifically seek to include participants of various minority groups such as race or religion, based on their proportionality to the total population as mentioned above. A stratified survey could thus claim to be more representative of the population than a survey of simple random sampling or systematic sampling.

Similarly, if population density varies greatly within a region, stratified sampling will ensure that estimates can be made with equal accuracy in different parts of the region, and that comparisons of sub-regions can be made with equal statistical power. For example, in Ontario a survey taken throughout the province might use a larger sampling fraction in the less populated north, since the disparity in population between north and south is so great that a sampling fraction based on the provincial sample as a whole might result in the collection of only a handful of data from the north.

Randomized stratification can also be used to improve population representativeness in a study.

If the population is large and enough resources are available, usually one will use multi-stage sampling. In such situations, usually stratified sampling will be done at some stages.

Stratified sampling is not useful when the population cannot be exhaustively partitioned into disjoint subgroups. It would be a misapplication of the technique to make subgroups' sample sizes proportional to the amount of data available from the subgroups, rather than scaling sample sizes to subgroup sizes (or to their variances, if known to vary significantly e.g. by means of an F Test). Data representing each subgroup are taken to be of equal importance if suspected variation among them warrants stratified sampling. If subgroups' variances differ significantly and the data need to be stratified by variance, then there is no way to make the subgroup sample sizes proportional (at the same time) to the subgroups' sizes within the total population. For an efficient way to partition sampling resources among groups that vary in their means, their variances, and their costs, see "optimum allocation".

## Practical example

In general the size of the sample in each stratum is taken in proportion to the size of the stratum. This is called proportional allocation. Suppose that in a company there are the following staff:[1]

• male, full-time: 90
• male, part-time: 18
• female, full-time: 9
• female, part-time: 63
• Total: 180

and we are asked to take a sample of 40 staff, stratified according to the above categories.

The first step is to find the total number of staff (180) and calculate the percentage in each group.

• % male, full-time = 90 / 180 = 50%
• % male, part-time = 18 / 180 = 10%
• % female, full-time = 9 / 180 = 5%
• % female, part-time = 63 / 180 = 35%

This tells us that of our sample of 40,

• 50% should be male, full-time.
• 10% should be male, part-time.
• 5% should be female, full-time.
• 35% should be female, part-time.
• 50% of 40 is 20.
• 10% of 40 is 4.
• 5% of 40 is 2.
• 35% of 40 is 14.

Another easy way without having to calculate the percentage is to multiply each group size by the sample size and divide by the total population size (size of entire staff):

• male, full-time = 90 x (40 / 180) = 20
• male, part-time = 18 x (40 / 180) = 4
• female, full-time = 9 x (40 / 180) = 2
• female, part-time = 63 x (40 / 180) = 14

## References

1. ^ Hunt, Neville; Tyrrell, Sidney (2001) Stratified Sampling. Webpage at Coventry University (Accessed 12 July 2012)

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Stratified_sampling — Please support Wikipedia.
A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
 3022 videos foundNext >
 Stratified SamplingAn example of Stratified Sampling. How to use stratified samplingHow to use stratified sampling - this is based on an A grade GCSE question: "Andrew is going to carry out a survey of these students. He uses a sample of 50 ... Stratified Sampling GCSE tutorial Stratified Sampling - GCSE Maths revision VideoWritten notes can be found at: http://www.mathslearn.co.uk/GCSErevision/GCSEstratifiedsampling.htm This video talks through two examples of finding a stratif... 1c - Proportional Stratified Sampling HDHow to do Proportional Stratified Sampling in Excel as well as how to seperate the data by strata. Stratified Sampling - CorbettmathsThis video explains stratified sampling. Typically for GCSE Higher and Statistics. How To - Do a Stratified Sample (1)How to do a stratified sample using two methods - finding a divisor and using fractions. Stratified SamplingHow to calculate the population values for stratified sampling techniques. Cluster SamplingAn example of Cluster Sampling. How to Create A Stratified Random Sample in Excel5-Minute tutorial on how to create a stratified random sample in Excel.
 3022 videos foundNext >
 4 news items
 Medscape Hospitalizations Due to Urinary Catheters on the Rise Medscape Mon, 13 May 2013 13:27:25 -0700 This national dataset comes from a stratified sampling of 20% of nonfederal hospitals in the United States. The researchers identified hospitalizations listing complications from indwelling urinary catheters as the principal diagnosis for admission ... Astro Awani BN will return to Putrajaya Astro Awani Thu, 02 May 2013 18:46:58 -0700 The poll was conducted via phone involving 3,550 respondents who are eligible voters including in Sabah and Sarawak, using the random stratified sampling method with a 0.022 margin of error. In terms of racial breakdown, 63.5 per cent of the Malay ... New health insurance survey: 84 million people were uninsured for a time or ... Medical Xpress Thu, 25 Apr 2013 21:02:53 -0700 The report also presents estimates from the 2003, 2005, and 2010 Commonwealth Fund Biennial Health Insurance Surveys. These surveys were conducted by Princeton Survey Research Associates International using the same stratified sampling strategy as ... Inilah.com Rakyat Malaysia Pilih BN atau PR? Inilah.com Sat, 04 May 2013 05:04:40 -0700 Jajak pendapat dilakukan dengan wawancara melalui telepon untuk 1.600 responden di wilayah Semenajung Malaysia dengan random stratified sampling. Responden rakyat pedesaan dan kaum wanita cenderung percaya hanya BN yang bisa memerintah ...
 Limit to books that you can completely read online Include partial books (book previews) .gsc-branding { display:block; }

Oops, we seem to be having trouble contacting Twitter