digplanet beta 1: Athena
Share digplanet:


Applied sciences






















The Pantheon in Rome, Italy, is an example of Roman concrete construction.

Roman concrete, also called opus caementicium, was a material used in construction during the late Roman Republic through the whole history of the Roman Empire. Roman concrete was based on a hydraulic-setting cement with many material qualities similar to modern portland cement. By the middle of the 1st century, the material was used frequently as brick-faced concrete, although variations in aggregate allowed different arrangements of materials. Further innovative developments in the material, called the Concrete Revolution, contributed to structurally complicated forms, such as the Pantheon dome.[1] Roman concrete was also used to make roads.

Historic references[edit]

Caesarea is the earliest known example to have used underwater Roman concrete technology on such a large scale.

Vitruvius, writing around 25 BC in his Ten Books on Architecture, distinguished types of aggregate appropriate for the preparation of lime mortars. For structural mortars, he recommended pozzolana, which are volcanic sands from the sandlike beds of Pozzuoli brownish-yellow-gray in color near Naples and reddish-brown at Rome. Vitruvius specifies a ratio of 1 part lime to 3 parts pozzolana for cements used in buildings and a 1:2 ratio of lime to pulvis Puteolanus for underwater work, essentially the same ratio mixed today for concrete used at sea.[2]

By the middle of the 1st century, the principles of underwater construction in concrete were well known to Roman builders. The City of Caesarea was the earliest known example to have made use of underwater Roman concrete technology on such a large scale.[3]

Rebuilding Rome after the fire in 64 AD, which destroyed large portions of the city, the new building code by Nero consisted of largely brick-faced concrete. This appears to have encouraged the development of the brick and concrete industries.[3]

Example of opus caementicium on a tomb on the ancient Appian Way in Rome. The original covering has been removed.

In most usage, the raw concrete surface was considered unsightly and some sort of facing was applied. Different techniques were characteristic of different periods and included:

Material properties[edit]

Roman concrete, like any concrete, consists of an aggregate and hydraulic mortar – a binder mixed with water that hardens over time. The aggregate varied, and included pieces of rock, ceramic tile, and brick rubble from the remains of previously demolished buildings. Reinforcing elements, such as steel rebar, were not used.

Gypsum and lime were used as binders. Volcanic dusts, called pozzolana or "pit sand", were favored where they could be obtained. Pozzolana makes the concrete more resistant to salt water than modern-day concrete.[4] The pozzolanic mortar used had a high content of alumina and silica.

Concrete, and in particular, the hydraulic mortar responsible for its cohesion, was a type of structural ceramic whose utility derived largely from its rheological plasticity in the paste state. The setting and hardening of hydraulic cements derived from hydration of materials and the subsequent chemical and physical interaction of these hydration products. This differed from the setting of slaked lime mortars, the most common cements of the pre-Roman world. Once set, Roman concrete exhibited little plasticity, although it retained some resistance to tensile stresses.

The setting of pozzolanic cements has much in common with setting of their modern counterpart, portland cement. The high silica composition of Roman pozzolana cements is very close to that of modern cement to which blast furnace slag, fly ash, or silica fume have been added.

Compressive strengths for modern portland cements are typically at the 50 MPa level and have improved almost ten-fold since 1860.[5] There are no comparable mechanical data for ancient mortars, although some information about tensile strength may be inferred from the cracking of Roman concrete domes. These tensile strengths vary substantially from the water/cement ratio used in the initial mix. At present, there is no way of ascertaining what water/cement ratios the Romans used, nor are there extensive data for the effects of this ratio on the strengths of pozzolanic cements.[6]

Seismic technology[edit]

For an environment as prone to earthquakes as the Italian peninsula, interruptions and internal constructions within walls and domes created discontinuities in the concrete mass. Portions of the building could then shift slightly when there was movement of the earth to accommodate such stresses, enhancing the overall strength of the structure. It was in this sense that bricks and concrete were flexible. It may have been precisely for this reason that, although many buildings sustained serious cracking from a variety of causes, they continue to stand to this day.[7]

Another technology used to improve the strength and stability of concrete was its gradation in domes. One example included the Pantheon, where the aggregate of the upper dome region consisted of alternating layers of light tuff and pumice, giving the concrete a density of 1,350 kg/m3. The foundation of the structure used travertine as an aggregate, having a much higher density of 2,200 kg/m3.[8]

See also[edit]


  • Jean-Pierre Adam, Anthony Mathews, Roman Building, 1994
  • Lynne C. Lancaster, Concrete Vaulted Construction in Imperial Rome, Cambridge University Press, 2005
  • Heather N. Lechtman & Linn W. Hobbs, “Roman Concrete and the Roman Architectural Revolution,” Ceramics and Civilization Volume 3: High Technology Ceramics: Past, Present, Future, edited by W.D. Kingery and published by the American Ceramics Society, 1986
  • W. L. MacDonald, The Architecture of the Roman Empire, rev. ed. Yale University Press, New Haven, 1982


  1. ^ Moore, David (February 1993). "The Riddle of Ancient Roman Concrete". S Dept. of the Interior, Bureau of Reclamation, Upper Colorado Region. www.romanconcrete.com. Retrieved 20 May 2013. 
  2. ^ Heather Lechtman and Linn Hobbs "Roman Concrete and the Roman Architectural Revolution", Ceramics and Civilization Volume 3: High Technology Ceramics: Past, Present, Future, edited by W.D. Kingery and published by the American Ceramics Society, 1986; and Vitruvius, Book II:v,1; Book V:xii2
  3. ^ a b Lechtman and Hobbs "Roman Concrete and the Roman Architectural Revolution"
  4. ^ Wayman, Erin. “The Secrets of Ancient Rome’s Buildings.” Smithsonian.com. 16 November 2011. Retrieved 24 April 2012.
  5. ^ N. B. Eden and J.E. Bailey, "Mechanical Properties and Tensile Failure Mechanism of a High Strength Polymer Modified Portland Cement," J. Mater. Sci., 19, 2677–85 (1984); and Lechtman and Hobbs "Roman Concrete and the Roman Architectural Revolution"
  6. ^ Lechtman and Hobbs "Roman Concrete and the Roman Architectural Revolution"; see also: C. A. Langton and D. M. Roy, "Longevity of Borehole and Shaft Sealing Materials: Characterization of Ancient Cement Based Building Materials," Mat. Res. Soc. SYmp. Proc. 26, 543–49 (1984); and Topical Report ONWI-202, Battelle Memorial Institute, Office of Nuclear Waste Isolation, Distribution Category UC-70, National Technical Information Service, U.S. Department of Commerce, 1982.)
  7. ^ W. L. MacDonald, The Architecture of the Roman Empire, rev. ed. Yale University Press, New Haven, 1982, fig. 131B; Lechtman and Hobbs "Roman Concrete and the Roman Architectural Revolution"
  8. ^ K. de Fine Licht, The Rotunda in Rome: A Study of Hadrian's Pantheon. Jutland Archaeological Society, Copenhagen, 1968, pp. 89–94, 134–35; and Lechtman and Hobbs "Roman Concrete and the Roman Architectural Revolution"

External links[edit]

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Roman_concrete — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
157175 videos foundNext > 

How the Romans introduced concrete

Look at how the Romans introduced concrete.

Secrets of the Greatest Roman Monuments

The Romans started making concrete more than 2000 years ago, but it wasn't quite like today's concrete. They had a different formula, which resulted in a su...

Latin Presentation- How Romans Made Concrete

3. Technology and Revolution in Roman Architecture

Roman Architecture (HSAR 252) Professor Kleiner discusses the revolution in Roman architecture resulting from the widespread adoption of concrete in the late...

The Power of Concrete - Ancient Inventions

Concrete was developed and used by the Ancient Romans to create structures like the Pantheon-- and we still use it in our structures today! (from Discovery C...

Roman Concrete

Digging History 7: The Architecture and Engineering of Rome

The Romans began building with local materials, wood, clay, and tuff (see Episode 3 for local materials and geology of the city). There are many sources from...

How to Make Ancient Roman Concrete

Image Source: http://www.granicreteaustralia.com.au Article Source: http://www.ehow.com/how_5670473_make-ancient-roman-concrete.html The manufacture and use ...

Roman Stone's Roman Road Concrete Repair System

Roman Stone's Roman Road Concrete Repair System.

ancient roman concrete

ancient roman concrete.

157175 videos foundNext > 

1 news items

PR Urgent (press release)
Sun, 10 Aug 2014 12:44:10 -0700

The components of the Opus Caementicium, Roman concrete, are; burnt lime, water, volcanic sand and rubble. Kalkbrenner, the Magister Calcariarum (lime burners), burned lime at around 1000 ° C the exact temperature required to alter its chemical ...

Oops, we seem to be having trouble contacting Twitter

Talk About Roman concrete

You can talk about Roman concrete with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!