digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad applications in these fields. Because problems involve several variables, differentiation with respect to time or one of the other variables requires application of the chain rule.[1]

Procedure[edit]

The most common way to approach related rates problems is the following:[2]

  1. Identify the known variables, including rates of change and the rate of change that is to be found. (Drawing a picture or representation of the problem can help to keep everything in order)
  2. Construct an equation relating the quantities whose rates of change are known to the quantity whose rate of change is to be found.
  3. Differentiate both sides of the equation with respect to time (or other rate of change). Often, the chain rule is employed at this step.
  4. Substitute the known rates of change and the known quantities into the equation.
  5. Solve for the wanted rate of change.

Errors in this procedure are often caused by plugging in the known values for the variables before (rather than after) finding the derivative with respect to time. Doing so will yield an incorrect result, since if those values are substituted for the variables before differentiation, those variables will become constants; and when the equation is differentiated, zeroes appear in places of all variables for which the values were plugged in.

The "four corner" approach to solving related rates problems. Knowing the relationship between position A and position B, differentiate to find the relationship between rate A and rate B.

Examples[edit]

Leaning ladder example[edit]

A 10-meter ladder is leaning against the wall of a building, and the base of the ladder is sliding away from the building at a rate of 3 meters per second. How fast is the top of the ladder sliding down the wall when the base of the ladder is 6 meters from the wall?

The distance between the base of the ladder and the wall, x, and the height of the ladder on the wall, y, represent the sides of a right triangle with the ladder as the hypotenuse, h. The objective is to find dy/dt, the rate of change of y with respect to time, t, when h, x and dx/dt, the rate of change of x, are known.

Step 1:

x=6
h=10
\frac{dx}{dt}=3
\frac{dh}{dt}=0
\frac{dy}{dt}=?


Step 2: From the Pythagorean theorem, the equation

x^2+y^2=h^2\,,

describes the relationship between x, y and h, for a right triangle. Differentiating both sides of this equation with respect to time, t, yields

\frac{d}{dt}(x^2+y^2)=\frac{d}{dt}(h^2)


Step 3: When solved for the wanted rate of change, dy/dt, gives us

\frac{d}{dt}(x^2)+\frac{d}{dt}(y^2)=\frac{d}{dt}(h^2)
(2x)\frac{dx}{dt}+(2y)\frac{dy}{dt}=(2h)\frac{dh}{dt}
x\frac{dx}{dt}+y\frac{dy}{dt}=h\frac{dh}{dt}
\frac{dy}{dt}=\frac{h\frac{dh}{dt}-x\frac{dx}{dt}}{y}.


Step 4 & 5: Using the variables from step 1 gives us:

\frac{dy}{dt}=\frac{h\frac{dh}{dt}-x\frac{dx}{dt}}{y}.
\frac{dy}{dt}=\frac{10\times0-6\times3}{y}=-\frac{18}{y}.

Solving for y using the Pythagorean Theorem gives:

x^2+y^2=h^2
6^2+y^2=10^2
y=8


Plugging in 8 for the equation:

-\frac{18}{y}=-\frac{18}{8}=-\frac{9}{4}

It is generally assumed that negative values represent the downward direction. In doing such, the top of the ladder is sliding down the wall at a rate of 94 meters per second.

Physics Examples[edit]

Because one physical quantity often depends on another, which, in turn depends on others, such as time, related rate methods have broad applications in Physics. This section presents an example of related rates kinematics and electromagnetic induction.

Physics Example I: Relative Kinematics of Two Vehicles[edit]

One vehicle is headed North and currently located at (0,3); the other vehicle is headed West and currently located at (4,0). The chain rule can be used to find whether they are getting closer or further apart.

For example, one can consider the kinematics problem where one vehicle is heading West toward an intersection at 80 miles per hour while another is heading North away from the intersection at 60 miles per hour. One can ask whether the vehicles are getting closer or further apart and at what rate at the moment when the North bound vehicle is 3 miles North of the intersection and the West bound vehicle is 4 miles East of the intersection.

Big idea: use chain rule to compute rate of change of distance between two vehicles.

Plan:

  1. Choose coordinate system
  2. Identify variables
  3. Draw picture
  4. Big idea: use chain rule to compute rate of change of distance between two vehicles
  5. Express c in terms of x and y via Pythagorean theorem
  6. Express dc/dt using chain rule in terms of dx/dt and dy/dt
  7. Substitute in x, y, dx/dt, dy/dt
  8. Simplify.

Choose coordinate system: Let the y-axis point North and the x-axis point East.

Identify variables: Define y(t) to be the distance of the vehicle heading North from the origin and x(t) to be the distance of the vehicle heading West from the origin.

Express c in terms of x and y via Pythagorean theorem:


c = (x^2 + y^2)^{1/2}

Express dc/dt using chain rule in terms of dx/dt and dy/dt:

\frac{dc}{dt} = \frac{d}{dt}(x^2 + y^2)^{1/2} Apply derivative operator to entire function
= \frac{1}{2}(x^2 + y^2)^{-1/2}\frac{d}{dt}(x^2 + y^2) Square root is outside function; Sum of squares is inside function
=\frac{1}{2}(x^2 + y^2)^{-1/2}\left[\frac{d}{dt}(x^2) + \frac{d}{dt}(y^2) \right] Distribute differentiation operator
= \frac{1}{2}(x^2 + y^2)^{-1/2}\left[ 2x\frac{dx}{dt} + 2y\frac{dy}{dt}\right] Apply chain rule to x(t) and y(t)}
= \frac{x\frac{dx}{dt} + y\frac{dy}{dt}}{\sqrt{x^2 + y^2}} Simplify.

Substitute in x = 4 mi, y = 3 mi, dx/dt = -80 mi/hr, dy/dt = 60 mi/hr and Simplify


\begin{align}
\frac{dc}{dt} & = \frac{4 mi \cdot (-80 mi/hr) + 3 mi \cdot (60) mi/hr}{\sqrt{(4 mi)^2 + (3 mi)^2}}\\
& = \frac{-320 mi^2/hr + 180 mi^2/hr}{5 mi}\\
&= \frac{-140 mi^2/hr}{5 mi}\\
& = -28 mi/hr\\
\end{align}

Consequently, the two vehicles are getting closer together at a rate of 28 mi/hr.

Physics Example II: Electromagnetic induction of conducting loop spinning in magnetic field[edit]

The magnetic flux through a loop of area A whose normal is at an angle θ to a magnetic field of strength B is

 \Phi_B = B A \cos(\theta),

Faraday's law of electromagnetic induction states that the induced electromotive force \mathcal{E} is the negative rate of change of magnetic flux \Phi_B through a conducting loop.

 \mathcal{E} = -{{d\Phi_B} \over dt},

If the loop area A and magnetic field B are held constant, but the loop is rotated so that the angle θ is a known function of time, the rate of change of θ can be related to the rate of change of \Phi_B (and therefore the electromotive force) by taking the time derivative of the flux relation

\mathcal{E} = -\frac{d\Phi_B}{dt} =  B A \sin{\theta} \frac{d\theta}{dt}

If for example, the loop is rotating at a constant angular velocity ω, so that θ=ωt, then

\mathcal{E}= \omega B A \sin{\omega t}

References[edit]

  1. ^ "Related Rates". Whitman College. Retrieved 2013-10-27. 
  2. ^ Kreider, Donald. "Related Rates". Dartmouth. Retrieved 2013-10-27. 

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Related_rates — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
1000000 videos foundNext > 

Related Rates #1 Problem Using Implicit Differentiation

Need a LIVE tutor to help answer a question? Check out the people at http://www.tutor.com/signup?AdDist=1&ExAdId=90fddaff-89aa-4a4f-91da-90841e168246&TDC_Off...

Related Rates

Click here to try integralCALC Academy: http://www.integralcalc.com/ Understand one of the trickiest applications of derivatives and implicit differentiation...

Related rates of water pouring into cone

More free lessons at: http://www.khanacademy.org/video?v=Xe6YlrCgkIo.

Related Rates # 7 - Ladder Sliding Down Wall, Finding Rate of Change of Area Under Ladder

Related Rates # 7 - Ladder Sliding Down Wall, Finding Rate of Change of Area Under Ladder. In this example, a ladder is being pulled away from a wall causing...

Related Rates: What you must NOT forget -- Calculus -- ThatTutorGuy.com

Calculus got you down? For Chris's videos covering the rest of calculus check out http://www.ThatTutorGuy.com.

Related Rates in Calculus Part 1

I work through multiple examples of Related Rate problems from Calculus.

Related Rates #2 Using Cones

Related Rates using Cones. Gravel is being dumped into a pile that forms a cone; how quickly is the height changing? A problem from UT-Austin calculus 1 cour...

Calculus 1 Lecture 2.8: Related Rates

Calculus 1 Lecture 2.8: Related Rates.

Calculus I - Related Rates - Example 3 - Street Light and Shadow

Related rates problem about a man's shadow as he walks away from a street light. The related rates worksheet with the general process and examples 1 - 6 can ...

Calculus: Related Rates 1

More videos at http://www.mathtv.com.

1000000 videos foundNext > 

3 news items

 
Business Insider
Thu, 31 Jul 2014 08:16:39 -0700

TMZ was chosen, Petersen writes, because "Thirty Mile Zone," "which historically delineated the boundaries for union-related rates within the industry and, in branding terms, connoted a mysterious sort of insider knowledge." Today, a map of the Thirty ...

Businessweek

Businessweek
Wed, 06 Aug 2014 09:43:16 -0700

At least ten firms have been fined almost $6.5 billion in total for rigging Libor and related rates. She worked on the international money markets desk at the bank, according to a LinkedIn profile matching her name. Koops has worked at Lloyds since ...
 
Wall Street Journal
Fri, 25 Jul 2014 05:56:15 -0700

Average total interest-bearing deposit balances and related rates paid decreased for both the three and six month periods ended June 30, 2014, as compared to the same periods in 2013, contributing to the reductions in interest expense in the second ...
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Related rates

You can talk about Related rates with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!