digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Bacteria Archaea Eucaryota Aquifex Thermotoga Cytophaga Bacteroides Bacteroides-Cytophaga Planctomyces Cyanobacteria Proteobacteria Spirochetes Gram-positive bacteria Green filantous bacteria Pyrodicticum Thermoproteus Thermococcus celer Methanococcus Methanobacterium Methanosarcina Halophiles Entamoebae Slime mold Animal Fungus Plant Ciliate Flagellate Trichomonad Microsporidia Diplomonad
A speculatively rooted tree for rRNA genes, showing major branches Bacteria, Archaea, and Eucaryota

A phylogenetic tree or evolutionary tree is a branching diagram or "tree" showing the inferred evolutionary relationships among various biological species or other entities—their phylogeny—based upon similarities and differences in their physical or genetic characteristics. The taxa joined together in the tree are implied to have descended from a common ancestor.

In a rooted phylogenetic tree, each node with descendants represents the inferred most recent common ancestor of the descendants, and the edge lengths in some trees may be interpreted as time estimates. Each node is called a taxonomic unit. Internal nodes are generally called hypothetical taxonomic units, as they cannot be directly observed. Trees are useful in fields of biology such as bioinformatics, systematics, and comparative phylogenetics.

History[edit]

The idea of a "tree of life" arose from ancient notions of a ladder-like progression from lower to higher forms of life (such as in the Great Chain of Being). Early representations of "branching" phylogenetic trees include a "paleontological chart" showing the geological relationships among plants and animals in the book Elementary Geology, by Edward Hitchcock (first edition: 1840).

Charles Darwin (1859) also produced one of the first illustrations and crucially popularized the notion of an evolutionary "tree" in his seminal book The Origin of Species. Over a century later, evolutionary biologists still use tree diagrams to depict evolution because such diagrams effectively convey the concept that speciation occurs through the adaptive and random splitting of lineages. Over time, species classification has become less static and more dynamic.

Types[edit]

Rooted tree[edit]

A phylogenetic tree, showing how Eukaryota and Archaea are more closely related to each other than to Bacteria, based on Cavalier-Smith's theory of bacterial evolution. (Cf. LUCA, Neomura.)

A rooted phylogenetic tree is a directed tree with a unique node corresponding to the (usually imputed) most recent common ancestor of all the entities at the leaves of the tree. The most common method for rooting trees is the use of an uncontroversial outgroup—close enough to allow inference from sequence or trait data, but far enough to be a clear outgroup.

Unrooted tree[edit]

Fig. 2: Unrooted tree of the myosin supergene family[1]

Unrooted trees illustrate the relatedness of the leaf nodes without making assumptions about ancestry at all. While unrooted trees can always be generated from rooted ones by simply omitting the root, a root cannot be inferred from an unrooted tree without some means of identifying ancestry; this is normally done by including an outgroup in the input data or introducing additional assumptions about the relative rates of evolution on each branch, such as an application of the molecular clock hypothesis. Figure 2 depicts an unrooted phylogenetic tree for myosin, a superfamily of proteins.[2]

Bifurcating tree[edit]

Both rooted and unrooted phylogenetic trees can be either bifurcating or multifurcating, and either labeled or unlabeled. A rooted bifurcating tree has exactly two descendants arising from each interior node (that is, it forms a binary tree), and an unrooted bifurcating tree takes the form of an unrooted binary tree, a free tree with exactly three neighbors at each internal node. In contrast, a rooted multifurcating tree may have more than two children at some nodes and an unrooted multifurcating tree may have more than three neighbors at some nodes. A labeled tree has specific values assigned to its leaves, while an unlabeled tree, sometimes called a tree shape, defines a topology only. The number of possible trees for a given number of leaf nodes depends on the specific type of tree, but there are always more multifurcating than bifurcating trees, more labeled than unlabeled trees, and more rooted than unrooted trees. The last distinction is the most biologically relevant; it arises because there are many places on an unrooted tree to put the root. For labeled bifurcating trees, there are:


(2n-3)!! = \frac{(2n-3)!}{2^{n-2}(n-2)!} \,,\,\text{for}\,n \ge 2

total rooted trees and


(2n-5)!! = \frac{(2n-5)!}{2^{n-3}(n-3)!} \,,\,\text{for}\,n \ge 3

total unrooted trees, where n represents the number of leaf nodes. Among labeled bifurcating trees, the number of unrooted trees with n leaves is equal to the number of rooted trees with n-1 leaves.[3]

Special tree types[edit]

Fig. 3: A highly resolved, automatically generated tree of life, based on completely sequenced genomes.[4][5]
  • A dendrogram is a broad term for the diagrammatic representation of a phylogenetic tree.
  • A cladogram is a phylogenetic tree formed using cladistic methods. This type of tree only represents a branching pattern; i.e., its branch spans do not represent time or relative amount of character change.
  • A phylogram is a phylogenetic tree that has branch spans proportional to the amount of character change.
  • A chronogram is a phylogenetic tree that explicitly represents evolutionary time through its branch spans.

Construction[edit]

Phylogenetic trees among a nontrivial number of input sequences are constructed using computational phylogenetics methods. Distance-matrix methods such as neighbor-joining or UPGMA, which calculate genetic distance from multiple sequence alignments, are simplest to implement, but do not invoke an evolutionary model. Many sequence alignment methods such as ClustalW also create trees by using the simpler algorithms (i.e. those based on distance) of tree construction. Maximum parsimony is another simple method of estimating phylogenetic trees, but implies an implicit model of evolution (i.e. parsimony). More advanced methods use the optimality criterion of maximum likelihood, often within a Bayesian Framework, and apply an explicit model of evolution to phylogenetic tree estimation.[3] Identifying the optimal tree using many of these techniques is NP-hard,[3] so heuristic search and optimization methods are used in combination with tree-scoring functions to identify a reasonably good tree that fits the data.

Tree-building methods can be assessed on the basis of several criteria:[6]

  • efficiency (how long does it take to compute the answer, how much memory does it need?)
  • power (does it make good use of the data, or is information being wasted?)
  • consistency (will it converge on the same answer repeatedly, if each time given different data for the same model problem?)
  • robustness (does it cope well with violations of the assumptions of the underlying model?)
  • falsifiability (does it alert us when it is not good to use, i.e. when assumptions are violated?)

Tree-building techniques have also gained the attention of mathematicians. Trees can also be built using T-theory.[7]

Limitations[edit]

Although phylogenetic trees produced on the basis of sequenced genes or genomic data in different species can provide evolutionary insight, they have important limitations. They do not necessarily accurately represent the evolutionary history of the included taxa. The data on which they are based is noisy; the analysis can be confounded by genetic recombination,[8] horizontal gene transfer,[9] hybridisation between species that were not nearest neighbors on the tree before hybridisation takes place, convergent evolution, and conserved sequences.

Also, there are problems in basing the analysis on a single type of character, such as a single gene or protein or only on morphological analysis, because such trees constructed from another unrelated data source often differ from the first, and therefore great care is needed in inferring phylogenetic relationships among species. This is most true of genetic material that is subject to lateral gene transfer and recombination, where different haplotype blocks can have different histories. In general, the output tree of a phylogenetic analysis is an estimate of the character's phylogeny (i.e. a gene tree) and not the phylogeny of the taxa (i.e. species tree) from which these characters were sampled, though ideally, both should be very close. For this reason, serious phylogenetic studies generally use a combination of genes that come from different genomic sources (e.g., from mitochondrial or plastid vs. nuclear genomes), or genes that would be expected to evolve under different selective regimes, so that homoplasy (false homology) would be unlikely to result from natural selection.

When extinct species are included in a tree, they are terminal nodes, as it is unlikely that they are direct ancestors of any extant species. Skepticism might be applied when extinct species are included in trees that are wholly or partly based on DNA sequence data, due to the fact that little useful "ancient DNA" is preserved for longer than 100,000 years, and except in the most unusual circumstances no DNA sequences long enough for use in phylogenetic analyses have yet been recovered from material over 1 million years old.

The range of useful DNA materials has expanded with advances in extraction and sequencing technologies. Development of technologies able to infer sequences from smaller fragments, or from spatial patterns of DNA degradation products, would further expand the range of DNA considered useful.

In some organisms, endosymbionts have an independent genetic history from the host.

Phylogenetic networks are used when bifurcating trees are not suitable, due to these complications which suggest a more reticulate evolutionary history of the organisms sampled..

See also[edit]

The "tree of life"[edit]

  • Evolutionary history of life, an overview of the major time periods of life on earth
  • Life, the top level for Wikipedia articles on living species, reflecting a diversity of classification systems.
  • Three-domain system (cell types)
  • Wikispecies, an external Wikimedia Foundation project to construct a "tree of life" appropriate for use by scientists

Fields of study[edit]

Software[edit]

References[edit]

  1. ^ Hodge T, Cope M (1 October 2000). "A myosin family tree". J Cell Sci 113 (19): 3353–4. PMID 10984423. 
  2. ^ Maher BA (2002). "Uprooting the Tree of Life". The Scientist 16: 18. 
  3. ^ a b c Felsenstein J. (2004). Inferring Phylogenies Sinauer Associates: Sunderland, MA.
  4. ^ Letunic, I; Bork, P (2007). "Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation.". Bioinformatics (Pubmed) 23 (1): 127–8. doi:10.1093/bioinformatics/btl529. PMID 17050570. 
  5. ^ Ciccarelli, FD; Doerks, T; Von Mering, C; Creevey, CJ; Snel, B; Bork, P (2006). "Toward automatic reconstruction of a highly resolved tree of life". Science (Pubmed) 311 (5765): 1283–7. Bibcode:2006Sci...311.1283C. doi:10.1126/science.1123061. PMID 16513982. 
  6. ^ Penny, D.; Hendy, M. D.; Steel, M. A. (1992). "Progress with methods for constructing evolutionary trees". Trends in Ecology and Evolution 7: 73–79. 
  7. ^ A. Dress, K. T. Huber, and V. Moulton. 2001. Metric Spaces in Pure and Applied Mathematics. Documenta Mathematica LSU 2001: 121-139
  8. ^ Arenas M, Posada D (2010). "The effect of recombination on the reconstruction of ancestral sequences". Genetics 184 (4): 1133–1139. doi:10.1534/genetics.109.113423. 
  9. ^ Woese C (2002). "On the evolution of cells". Proc Natl Acad Sci USA 99 (13): 8742–7. Bibcode:2002PNAS...99.8742W. doi:10.1073/pnas.132266999. PMC 124369. PMID 12077305. 

Further reading[edit]

  • Schuh, R. T. and A. V. Z. Brower. 2009. Biological Systematics: principles and applications (2nd edn.) ISBN 978-0-8014-4799-0
  • MEGA, a free software to draw phylogenetic trees.

External links[edit]

Images[edit]

General[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Phylogenetic_tree — Please support Wikipedia.
A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
2594 videos foundNext > 

Phylogenetics

006 - Phylogenetics Paul Andersen discusses the specifics of phylogenetics. The evolutionary relationships of organisms are discovered through both morpholog...

Understanding Phylogenetic Trees (1)

Grade 11-12 Flipped lesson Version 1 To be followed in class by discussion and worksheets.

Phylogenetic trees

Phylogenetic Tree

Explanation of the Phylogenetic Tree.

Taxonomy and the Tree of Life

More free lessons at: http://www.khanacademy.org/video?v=oHvLlS_Sc54 The science of taxonomy and where humans fit into the tree of life.

Cladograms

Paul Andersen shows you how to construct a cladogram from a group of organisms using shared characteristics. He also discusses the process of parsimony in cl...

Taxonomy: Life's Filing System - Crash Course Biology #19

Hank tells us the background story and explains the importance of the science of classifying living things, also known as taxonomy. Crash Course Biology is n...

Using Probability & Parsimony to Construct Phylogenic Trees

Mr. Lima discusses the rules scientists use to systematically construct phylogenic trees, including Parsimony (simplicity) and likelihood (probability).

Biology 1B - Lecture 24: Phylogenetics

General Biology.

1 B 2 Phylogenetic Trees and Cladograms

My description of how to draw a phylogenetic tree / cladogram for my AP Biology class.

2594 videos foundNext > 

20 news items

 
Journal of Clinical Microbiology
Thu, 17 Apr 2014 07:22:52 -0700

S1 (Plot of coverage of reads for the three complete MCPyV sequences obtained by HTS), S2 (Phylogenetic tree generated with the neighbor-joining method [fragment A]), and S3 (Phylogenetic tree generated with the neighbor-joining method [fragment B]).

Sci-News.com

Sci-News.com
Fri, 04 Apr 2014 05:33:00 -0700

Time-calibrated phylogenetic tree with ancestral state reconstructions of primary bioregions inhabited by hummingbirds. Color-coded bars at the tips of the tree indicate the contemporary distribution of the corresponding species. Color-coded pie ...
 
The Conversation
Sat, 12 Apr 2014 11:40:18 -0700

But any phylogenetic tree will usually have a small number of species whose closest relatives diverged many hundreds of thousands or millions of years ago and who now have very few recent relatives. These are the species that are termed the most ...
 
7thSpace Interactive (press release)
Tue, 15 Apr 2014 17:33:45 -0700

... quality similar to the best progressive methods.Furthermore, MSARC outperforms them on sequence sets whose evolutionary distances are difficult to represent by a phylogenetic tree. These datasets are most exposed to the guide-tree bias of alignments.

French Tribune

The Guardian
Mon, 07 Apr 2014 05:53:45 -0700

A critical foundation upon which this decade-long project is based is reconstructing a detailed phylogenetic tree for the hummingbird family that includes as many species as possible. So far, this phylogeny includes sequences from six chromosomal and ...

Science Codex

Science Codex
Mon, 31 Mar 2014 11:56:15 -0700

The phylogenetic tree (see figure) shows the evolutionary relationships among the dicot (yellow) and monocot (blue) species they studied. Branch points represent points of divergence of two species from a common ancestor. Sequences in common between ...

Sci-News.com

Sci-News.com
Wed, 02 Apr 2014 13:07:00 -0700

Striping and horseflies activity. Phylogenetic tree of equid subspecies showing leg stripe intensity, inside circles, and proportion of geographic range overlap with 7 consecutive months of temperature lying between 15 and 30 degrees Celsius and ...

Scientist

Scientist
Thu, 27 Mar 2014 17:22:30 -0700

The researchers constructed a phylogenetic tree including 372 species of songbirds and found that 16 percent of all birds (and 44 percent of songbirds) were duetters—a higher estimate than once thought. Duetters were also unlikely to be migrators.
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Phylogenetic tree

You can talk about Phylogenetic tree with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!