digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Bacteria Archaea Eucaryota Aquifex Thermotoga Cytophaga Bacteroides Bacteroides-Cytophaga Planctomyces Cyanobacteria Proteobacteria Spirochetes Gram-positive bacteria Green filantous bacteria Pyrodicticum Thermoproteus Thermococcus celer Methanococcus Methanobacterium Methanosarcina Halophiles Entamoebae Slime mold Animal Fungus Plant Ciliate Flagellate Trichomonad Microsporidia Diplomonad
A speculatively rooted tree for rRNA genes, showing the three life domains Bacteria, Archaea, and Eucaryota, and linking the three branches of living organisms to the LUCA (the black trunk at the bottom of the tree); cf. next graphic.
A rooted phylogenetic tree, illustrating how Eukaryota and Archaea are more closely related to each other than to Bacteria (based on Cavalier-Smith's theory of bacterial evolution). Neomura is a clade composed of two life domains, Archaea and Eukaryota. LUCA, a variant of LUA, stands for last universal common ancestor.

A phylogenetic tree or evolutionary tree is a branching diagram or "tree" showing the inferred evolutionary relationships among various biological species or other entities—their phylogeny—based upon similarities and differences in their physical or genetic characteristics. The taxa joined together in the tree are implied to have descended from a common ancestor.

In a rooted phylogenetic tree, each node with descendants represents the inferred most recent common ancestor of the descendants, and the edge lengths in some trees may be interpreted as time estimates. Each node is called a taxonomic unit. Internal nodes are generally called hypothetical taxonomic units, as they cannot be directly observed. Trees are useful in fields of biology such as bioinformatics, systematics, and comparative phylogenetics.

Unrooted trees illustrate only the relatedness of the leaf nodes and do not require the ancestral root to be known or inferred.

History[edit]

The idea of a "tree of life" arose from ancient notions of a ladder-like progression from lower to higher forms of life (such as in the Great Chain of Being). Early representations of "branching" phylogenetic trees include a "paleontological chart" showing the geological relationships among plants and animals in the book Elementary Geology, by Edward Hitchcock (first edition: 1840).

Charles Darwin (1859) also produced one of the first illustrations and crucially popularized the notion of an evolutionary "tree" in his seminal book The Origin of Species. Over a century later, evolutionary biologists still use tree diagrams to depict evolution because such diagrams effectively convey the concept that speciation occurs through the adaptive and semirandom splitting of lineages. Over time, species classification has become less static and more dynamic.

Types[edit]

Rooted tree[edit]

A rooted phylogenetic tree (see two graphics at top) is a directed tree with a unique node corresponding to the (usually imputed) most recent common ancestor of all the entities at the leaves of the tree. The most common method for rooting trees is the use of an uncontroversial outgroup—close enough to allow inference from trait data or molecular sequencing, but far enough to be a clear outgroup.

Unrooted tree[edit]

An unrooted phylogenetic tree for myosin, a superfamily of proteins.[1]

Unrooted trees illustrate the relatedness of the leaf nodes without making assumptions about ancestry. They do not require the ancestral root to be known or inferred.[2] Unrooted trees can always be generated from rooted ones by simply omitting the root. By contrast, inferring the root of an unrooted tree requires some means of identifying ancestry. This is normally done by including an outgroup in the input data so that the root is necessarily between the outgroup and the rest of the taxa in the tree, or by introducing additional assumptions about the relative rates of evolution on each branch, such as an application of the molecular clock hypothesis.[3]

Bifurcating tree[edit]

Both rooted and unrooted phylogenetic trees can be either bifurcating or multifurcating, and either labeled or unlabeled. A rooted bifurcating tree has exactly two descendants arising from each interior node (that is, it forms a binary tree), and an unrooted bifurcating tree takes the form of an unrooted binary tree, a free tree with exactly three neighbors at each internal node. In contrast, a rooted multifurcating tree may have more than two children at some nodes and an unrooted multifurcating tree may have more than three neighbors at some nodes. A labeled tree has specific values assigned to its leaves, while an unlabeled tree, sometimes called a tree shape, defines a topology only. The number of possible trees for a given number of leaf nodes depends on the specific type of tree, but there are always more multifurcating than bifurcating trees, more labeled than unlabeled trees, and more rooted than unrooted trees. The last distinction is the most biologically relevant; it arises because there are many places on an unrooted tree to put the root. For labeled bifurcating trees, there are:


(2n-3)!! = \frac{(2n-3)!}{2^{n-2}(n-2)!} \,,\,\text{for}\,n \ge 2

total rooted trees and


(2n-5)!! = \frac{(2n-5)!}{2^{n-3}(n-3)!} \,,\,\text{for}\,n \ge 3

total unrooted trees, where n represents the number of leaf nodes. Among labeled bifurcating trees, the number of unrooted trees with n leaves is equal to the number of rooted trees with n-1 leaves.[4]

Special tree types[edit]

A spindle diagram, showing the evolution of the vertebrates at class level, width of spindles indicating number of families. Spindle diagrams are often used in evolutionary taxonomy.
A highly resolved, automatically generated tree of life, based on completely sequenced genomes.[5][6]
  • A dendrogram is a broad term for the diagrammatic representation of a phylogenetic tree.
  • A cladogram is a phylogenetic tree formed using cladistic methods. This type of tree only represents a branching pattern; i.e., its branch spans do not represent time or relative amount of character change.
  • A phylogram is a phylogenetic tree that has branch spans proportional to the amount of character change.
  • A chronogram is a phylogenetic tree that explicitly represents evolutionary time through its branch spans.
  • A spindle diagram (often called a Romerogram after the American palaeontologist Alfred Romer) is the representation of the evolution and abundance of the various taxa through time.
  • A Dahlgrenogram is a diagram representing a cross section of a phylogenetic tree
  • A phylogenetic network is not strictly speaking a tree, but rather a more general graph, or a directed acyclic graph in the case of rooted networks. They are used to overcome some of the limitations inherent to trees.

Construction[edit]

Phylogenetic trees composed with a nontrivial number of input sequences are constructed using computational phylogenetics methods. Distance-matrix methods such as neighbor-joining or UPGMA, which calculate genetic distance from multiple sequence alignments, are simplest to implement, but do not invoke an evolutionary model. Many sequence alignment methods such as ClustalW also create trees by using the simpler algorithms (i.e. those based on distance) of tree construction. Maximum parsimony is another simple method of estimating phylogenetic trees, but implies an implicit model of evolution (i.e. parsimony). More advanced methods use the optimality criterion of maximum likelihood, often within a Bayesian Framework, and apply an explicit model of evolution to phylogenetic tree estimation.[4] Identifying the optimal tree using many of these techniques is NP-hard,[4] so heuristic search and optimization methods are used in combination with tree-scoring functions to identify a reasonably good tree that fits the data.

Tree-building methods can be assessed on the basis of several criteria:[7]

  • efficiency (how long does it take to compute the answer, how much memory does it need?)
  • power (does it make good use of the data, or is information being wasted?)
  • consistency (will it converge on the same answer repeatedly, if each time given different data for the same model problem?)
  • robustness (does it cope well with violations of the assumptions of the underlying model?)
  • falsifiability (does it alert us when it is not good to use, i.e. when assumptions are violated?)

Tree-building techniques have also gained the attention of mathematicians. Trees can also be built using T-theory.[8]

Limitations[edit]

Although phylogenetic trees produced on the basis of sequenced genes or genomic data in different species can provide evolutionary insight, they have important limitations. Most importantly, they do not necessarily accurately represent the evolutionary history of the included taxa. In fact, they are literally scientific hypotheses, subject to falsification by further study (e.g., gathering of additional data, analyzing the existing data with improved methods). The data on which they are based is noisy; the analysis can be confounded by genetic recombination,[9] horizontal gene transfer,[10] hybridisation between species that were not nearest neighbors on the tree before hybridisation takes place, convergent evolution, and conserved sequences.

Also, there are problems in basing the analysis on a single type of character, such as a single gene or protein or only on morphological analysis, because such trees constructed from another unrelated data source often differ from the first, and therefore great care is needed in inferring phylogenetic relationships among species. This is most true of genetic material that is subject to lateral gene transfer and recombination, where different haplotype blocks can have different histories. In general, the output tree of a phylogenetic analysis is an estimate of the character's phylogeny (i.e. a gene tree) and not the phylogeny of the taxa (i.e. species tree) from which these characters were sampled, though ideally, both should be very close. For this reason, serious phylogenetic studies generally use a combination of genes that come from different genomic sources (e.g., from mitochondrial or plastid vs. nuclear genomes), or genes that would be expected to evolve under different selective regimes, so that homoplasy (false homology) would be unlikely to result from natural selection.

When extinct species are included in a tree, they are terminal nodes, as it is unlikely that they are direct ancestors of any extant species. Skepticism might be applied when extinct species are included in trees that are wholly or partly based on DNA sequence data, because little useful "ancient DNA" is preserved for longer than 100,000 years, and except in the most unusual circumstances no DNA sequences long enough for use in phylogenetic analyses have yet been recovered from material over 1 million years old.

The range of useful DNA materials has expanded with advances in extraction and sequencing technologies. Development of technologies able to infer sequences from smaller fragments, or from spatial patterns of DNA degradation products, would further expand the range of DNA considered useful.

In some organisms, endosymbionts have an independent genetic history from the host.

Phylogenetic networks are used when bifurcating trees are not suitable, due to these complications which suggest a more reticulate evolutionary history of the organisms sampled.

See also[edit]

The "tree of life"[edit]

  • Evolutionary history of life, an overview of the major time periods of life on earth
  • Life, the top level for Wikipedia articles on living species, reflecting a diversity of classification systems.
  • Three-domain system (cell types)
  • Wikispecies, an external Wikimedia Foundation project to construct a "tree of life" appropriate for use by scientists

Fields of study[edit]

Software[edit]

References[edit]

  1. ^ Hodge T, Cope M (1 October 2000). "A myosin family tree". J Cell Sci 113 (19): 3353–4. PMID 10984423. 
  2. ^ http://www.ncbi.nlm.nih.gov/Class/NAWBIS/Modules/Phylogenetics/phylo9.html
  3. ^ Maher BA (2002). "Uprooting the Tree of Life". The Scientist 16: 18. 
  4. ^ a b c Felsenstein J. (2004). Inferring Phylogenies Sinauer Associates: Sunderland, MA.
  5. ^ Letunic, Ivica; Bork, Peer (January 1, 2007). "Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation" (PDF). Bioinformatics (Cambridge: Oxford University Press) 23 (1): 127–128. doi:10.1093/bioinformatics/btl529. ISSN 1367-4803. PMID 17050570. Retrieved 2015-07-21. 
  6. ^ Ciccarelli, FD; Doerks, T; Von Mering, C; Creevey, CJ; Snel, B; Bork, P (2006). "Toward automatic reconstruction of a highly resolved tree of life". Science (Pubmed) 311 (5765): 1283–7. Bibcode:2006Sci...311.1283C. doi:10.1126/science.1123061. PMID 16513982. 
  7. ^ Penny, D.; Hendy, M. D.; Steel, M. A. (1992). "Progress with methods for constructing evolutionary trees". Trends in Ecology and Evolution 7: 73–79. doi:10.1016/0169-5347(92)90244-6. 
  8. ^ A. Dress, K. T. Huber, and V. Moulton. 2001. Metric Spaces in Pure and Applied Mathematics. Documenta Mathematica LSU 2001: 121-139
  9. ^ Arenas M, Posada D (2010). "The effect of recombination on the reconstruction of ancestral sequences". Genetics 184 (4): 1133–1139. doi:10.1534/genetics.109.113423. 
  10. ^ Woese C (2002). "On the evolution of cells". Proc Natl Acad Sci USA 99 (13): 8742–7. Bibcode:2002PNAS...99.8742W. doi:10.1073/pnas.132266999. PMC 124369. PMID 12077305. 

Further reading[edit]

External links[edit]

Images[edit]

General[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Phylogenetic_tree — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.

685 news items

 
GenomeWeb
Thu, 27 Aug 2015 07:55:25 -0700

Viruses added to Nextflu are displayed in a colorful phylogenetic tree that shows the viral strains circulating today and the relationships between them. Furthermore, strains are annotated with information such as viral genotype at specific sites, and ...
 
Nature.com
Tue, 01 Sep 2015 07:02:00 -0700

Next, a phylogenetic tree was built based on 22 ribosomal proteins that were shared among the isolate genomes from the Bacteriodetes and Chlorobi, the six genome bins recovered from four metagenomes from thermal springs, and two thermal spring fosmid ...
 
Nature.com
Mon, 31 Aug 2015 08:07:29 -0700

For each intra-host data set, inspection of sequence alignments, phylogenetic tree topologies and sequence diversity measures were used to categorize infections as either established by a single founder variant (homogeneous viral population) or ...

Nature.com

Nature.com
Sun, 09 Aug 2015 22:26:15 -0700

A midpoint-rooted phylogenetic tree revealed three minor Asian ancestral clusters and five modern clades that were broadly defined as Asian Africa 1 and 2, Pacific, Europe-Russia and Central Asia. Assignment of ancestral and modern clusters based on ...

Scicasts (press release) (blog)

Scicasts (press release) (blog)
Fri, 07 Aug 2015 03:41:15 -0700

Phylogenetic tree showing the distinct groups of S. flexneri strains revealed by genomic data collected from around the world. Pie charts display the serotype composition and geographic origin of strains within each group, emphasising both the global ...

University of Arkansas Newswire

University of Arkansas Newswire
Mon, 24 Aug 2015 06:07:30 -0700

And from that, once we have a phylogenetic tree, we can hypothesize several things, such as how different shapes of the amoebae occurred, whether there was sex in the life cycle and which ones don't have sex and why they don't have sex.” Sex in amoebae ...
 
Press Herald
Wed, 19 Aug 2015 01:02:35 -0700

It may have something to do with how close we are in the phylogenetic tree. These proteins get into the immune system and set up a mild degree of inflammatory reaction. That produces certain chemical products that over time have a deleterious effect.”.
 
Nature.com
Wed, 19 Aug 2015 03:41:15 -0700

Multiple sequence alignment was done by using Cluster W and the phylogenetic tree was constructed by MEGA 5.0 using the neighbor-joining method. A bootstrap analysis of 1,000 replicates was done to determine the significance of branching. The samples ...
Loading

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight