digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Illustration from 1881 US Patent 248872, for a perpetual calendar paperweight. The upper section is rotated to reveal one of seven lists of years (splitting leap years) for which the seven calendars below apply.
A 50 year "pocket calendar" that is adjusted by turning the dial to place the name of the month under the current year. One can then deduce the day of the week, or the date.

A perpetual calendar is a calendar valid for many years, usually designed to allow the calculation of the day of the week for a given date in the future.

For the Gregorian and Julian calendars, a perpetual calendar typically consists of one of two general variations:

• 14 one-year calendars, plus a table to show which one-year calendar is to be used for any given year. These one-year calendars divide evenly into two sets of seven calendars: seven for each common year (year that does not have a February 29) that starts on each day of the week, and seven for each leap year that starts on each day of the week, totaling fourteen. (See Dominical letter for one common naming scheme for the 14 calendars.)
• Seven (31-day) one-month calendars (or seven each of 28–31 day month lengths, for a total of 28) and one or more tables to show which calendar is used for any given month. Some perpetual calendars' tables slide against each other, so that aligning two scales with one another reveals the specific month calendar via a pointer or window mechanism.[1]

The seven calendars may be combined into one, either with 13 columns of which only seven are revealed,[2][3] or with movable day-of-week names (as shown in the pocket perpetual calendar picture.

Note that such a perpetual calendar fails to indicate the dates of moveable feasts such as Easter, which are calculated based on a combination of events in the Tropical year and lunar cycles. These issues are dealt with in great detail in Computus.

An early example of a perpetual calendar for practical use is found in the manuscript GNM 3227a. The calendar covers the period of 1390–1495 (on which grounds the manuscript is dated to c. 1389). For each year of this period, it lists the number of weeks between Christmas day and Quinquagesima. This is the first known instance of a tabular form of perpetual calendar allowing the calculation of the moveable feasts which became popular during the 15th century.[4]

## Other uses of the term "perpetual calendar"

• Offices and retail establishments often display devices containing a set of elements to form all possible numbers from 1 through 31, as well as the names/abbreviations for the months and the days of the week, so as to show the current date for the convenience of people who might be signing and dating documents such as checks. Establishments that serve alcoholic beverages may use a variant that shows the current month and day, but subtracting the legal age of alcohol consumption in years, indicating the latest legal birth date for alcohol purchases.
• In watchmaking, "perpetual calendar" describes a calendar mechanism that correctly displays the date on the watch 'perpetually', taking into account the different lengths of the months as well as leap days. The internal mechanism will move the dial to the next day.[5]

These meanings are beyond the scope of the remainder of this article.

## Algorithms

Perpetual calendar use algorithms to compute the day of the week for any given year, month, and day of month. Even though the individual operations in the formulas can be very efficiently implemented in software (requiring no processor-intensive floating-point operations), they are too complicated for most people to perform all of the arithmetic mentally.[6] Perpetual calendar designers hide the complexity in tables to simplify their use.

A perpetual calendar employs a table for finding which of fourteen yearly calendars to use. A table for the Gregorian calendar expresses its 400-year grand cycle: 303 common years and 97 leap years total to 146,097 days, or exactly 20,871 weeks. This cycle breaks down into one 100-year period with 25 leap years, making 36,525 days, or one day less than 5,218 full weeks; and three 100-year periods with 24 leap years each, making 36,524 days, or two days less than 5,218 full weeks.

Within each 100-year block, the cyclic nature of the Gregorian calendar proceeds in exactly the same fashion as its Julian predecessor: A common year begins and ends on the same day of the week, so the following year will begin on the next successive day of the week. A leap year has one more day, so the year following a leap year begins on the second day of the week after the leap year began. Every four years, the starting weekday advances five days, so over a 28-year period it advances 35, returning to the same place in both the leap year progression and the starting weekday. This cycle completes three times in 84 years, leaving 16 years in the fourth, incomplete cycle of the century.

A major complicating factor in constructing a perpetual calendar algorithm is the peculiar and variable length of February, which was at one time the last month of the year, leaving the first 11 months March through January with a five-month repeating pattern: 31, 30, 31, 30, 31, ..., so that the offset from March of the starting day of the week for any month could be easily determined. Zeller's congruence, a well-known algorithm for finding the day of week for any date, explicitly defines January and February as the "13th" and "14th" months of the previous year in order to take advantage of this regularity, but the month-dependent calculation is still very complicated for mental arithmetic:

$\left\lfloor\frac{(m+1)26}{10}\right\rfloor \mod 7,$

Instead, a table-based perpetual calendar provides a simple look-up mechanism to find offset for the day of week for the first day of each month. To simplify the table, in a leap year January and February must either be treated as a separate year or have extra entries in the month table:

 Month Add For leap years Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0 3 3 6 1 4 6 2 5 0 3 5 6 2

## Perpetual Julian and Gregorian calendar table

For Julian dates before 1300 and after 1999 the year in the table which differs by an exact multiple of 700 years should be used. For Gregorian dates after 2299,the year in the table which differs by an exact multiple of 400 years should be used. The values "r0" through "r6" indicate the remainder when the Hundreds value is divided by 7 and 4 respectively, indicating how the series extend in either direction. Both Julian and Gregorian values are shown 1500–1999 for convenience.

For each component of the date (the hundreds, remaining digits and month), the corresponding numbers in the far right hand column on the same line are added to each other and the day of the month. This total is then divided by 7 and the remainder from this division located in the far right hand column. The day of the week is beside it. Bold figures (e.g. 04) denote leap year. If a year ends in 00 and its hundreds are in bold it is a leap year. Thus 19 indicates that 1900 is not a Gregorian leap year, (but 19 in the Julian column indicates that it is a Julian leap year, as are all Julian x00 years). 20 indicates that 2000 is a leap year. Use Jan and Feb only in leap years.

100s of Years Remaining Year Digits Month D
o
W
#
Julian
(r ÷ 7)
Gregorian
(r ÷ 4)
r5 19 16 20 r0 00 06   17 23 28 34   45 51 56 62   73 79 84 90 Jan    Oct Sa 0
r4 18 15 19 r3 01 07 12 18 29 35 40 46 57 63 68 74 85 91 96   May Su 1
r3 17
N/A
02   13 19 24 30   41 47 52 58   69 75 80 86   97 Feb  Aug M 2
r2 16 18 22 r2 03 08 14   25 31 36 42   53 59 64 70   81 87 92 98 Feb Mar Nov Tu 3
r1 15
N/A
09 15 20 26   37 43 48 54   65 71 76 82   93 99   Jun W 4
r0 14 17 21 r1 04 10   21 27 32 38   49 55 60 66   77 83 88 94   Sep Dec Th 5
r6 13
N/A
05 11 16 22 33 39 44 50 61 67 72 78 89 95 Jan Apr Jul F 6

Example: On what day does Feb 3, 4567 (Gregorian) fall?
1) The remainder of 45 / 4 is 1, so use the r1 entry: 5.
2) The remaining digits 67 give 6.
3) Feb (not Feb for leap years) gives 3.
4) Finally, add the day of the month: 3.
5) Adding 5 + 6 + 3 + 3 = 17. Dividing by 7 leaves a remainder of 3, so the day of the week is Tuesday.

### Check the result

A result control is shown by the calendar period from 1582 October 15 possible, but only for Gregorian calendar dates.

A genuinely perpetual calendar, which allows its user to look up the day of the week for any Gregorian date.

## References

1. ^ U.S. Patent 1,042,337, "Calendar (Fred P. Gorin)".
2. ^ U.S. Patent 248,872, "Calendar (Robert McCurdy)".
3. ^ "Aluminum Perpetual Calendar". 17 September 2011.
4. ^ Trude Ehlert, Rainer Leng, 'Frühe Koch- und Pulverrezepte aus der Nürnberger Handschrift GNM 3227a (um 1389)'; in: Medizin in Geschichte, Philologie und Ethnologie (2003), p. 291.
5. ^ "Mechanism Of Perpetual Calendar Watch". 17 September 2011.
6. ^ But see formula in preceding section, which is very easy to memorize.
 107423 videos foundNext >
 The Man's Guide to Haute Horlogerie: Episode 6 - The Perpetual CalendarWith the video series "The Man's Guide to Haute Horlogerie", which consists of seven episodes dedicated to iconic complications, IWC gives you an insight int... Perpetual Calendar Version 2Version Two of Perpetual Calendar by Clayton Boyer. Woodworking plans available at www.lisaboyer.com If you previously purchased the first version without th... IWC Portuguese Perpetual Calendar 5021-19One of the most beautifull watches in history. A. Lange & Sohne Richard Lange Perpetual Calendar Terraluna Watch Hands-On | aBlogtoWatchA. Lange & Sohne Richard Lange Perpetual Calendar Terraluna Watch Hands-On See more @ www.ablogtowatch.com SUBSCRIBE: https://www.youtube.com/ablogtowatch Ar... MoMA Perpetual Calendar by Gideon DaganDesigned for the Museum of Modern Art, NY, this unique calendar can be used year after year thus making it an eco-conscious product. The calendar can be plac... Breguet 3795 Tourbillon & Perpetual Calendar - Classique Grandes ComplicationsBreguet 3795 Tourbillon & Perpetual Calendar - Classique Grandes Complications. Openworked version of the 3797 Classique Grandes Complications wristwatch. Bo... How to reset a Seiko perpetual calendar and fit a new battery. Watch repair tutorials. 8F32In this video I am showing how to correctly fit a new battery and reset the calendar on a Seiko Perpetual calendar watch. Applies to Cal. 4F32A, 8F32A, 8F33A... IWC Portuguese Perpetual Calendar Changing to New Year 2013Month, date, day and year all changing simultaneously from 2012 to 2013. Wrist Watch Review: Part 3 - Citizen Eco-Drive Perpetual Calendar WR 100 - Calibre 8700Most of my watch collection can be found here: http://astore.amazon.com/m0711-20?_encoding=UTF8&node=2 This is a review of the wrist watches I have collected... RICHARD LANGE PERPETUAL CALENDAR "Terraluna" (english version)
 107423 videos foundNext >
 146 news items
 Minimalist Perpetual Calendar Displays Designs that Could Last a Lifetime PSFK Fri, 18 Jul 2014 12:31:28 -0700 Eternal and time are two words we rarely associate simultaneously with our daily, monthly, annual schedules. Our Moleskines anchor our sanity into a more cohesive picture, but also show us exactly why we feel that sometimes there's just not enough ... World Tempus Endeavour Perpetual Calendar Black Golden Edition World Tempus Thu, 17 Jul 2014 15:07:30 -0700 H. Moser & Cie. introduces the Endeavour Perpetual Calendar Black Golden Edition in a series limited to only 10 pieces. The HMC 341 manufacture calibre housed within this watch is a sophisticated execution of the perpetual calendar movement (winner of ... Retail Jeweller H. Moser & Cie launch the Endeavour Perpetual Calendar Black Golden Edition Retail Jeweller Mon, 14 Jul 2014 03:47:51 -0700 The HMC 341 manufacture calibre housed within this watch is a sophisticated execution of the ingenious perpetual calendar movement (winner of the Grand Prix de Genève for a complicated watch), with solid gold plates and bridges, hand-engraving and a ... Hong Kong Standard Over the moon Hong Kong Standard Thu, 31 Jul 2014 12:30:00 -0700 You can examine up close the heart of its patented constant-force mechanisms, and witness the energy flow from the balance spring to the escape wheel in a split second. And the Portuguese Perpetual Calendar - a new member of the popular Portuguese ... Livemint The grand supercomplication returns Livemint Wed, 30 Jul 2014 21:07:30 -0700 After three years of research and another five years of making, Patek Philippe delivered a watch with a stunning 24 complications, including a perpetual calendar, moon phases, sidereal time, power reserve, and indications for time of sunset and sunrise ... For Sale: The $17 Million Pocket Watch Forbes Wed, 30 Jul 2014 07:03:45 -0700 Among the watch's 24 horological complications were a perpetual calendar, moon phases, a power reserve and the night sky of New York City. In 1999 Sotheby's sold the Graves watch for$11 million, breaking the record for the most expensive timepiece ... North sound in full swing Cayman Compass Tue, 29 Jul 2014 22:03:45 -0700 8 may earn the lucky player a Ulysse Nardin Perpetual Calendar 322-10 valued at \$50,000. Post-match rounds have been sponsored by Michelob Ultra, and the winning corporate team will enjoy a celebratory Sunday brunch courtesy of Michael's Genuine ... Breguet Classique Tourbillon Quantième Perpétuel 3797 Forbes Sun, 27 Jul 2014 17:33:45 -0700 The amount of information displayed on the dial of a complicated watch can be confusing. Breguet attempted to solve this with its latest tourbillon and perpetual calendar timepiece by lifting the hours and minutes indicator to the foreground. A further ...
 Limit to books that you can completely read online Include partial books (book previews) .gsc-branding { display:block; }

Oops, we seem to be having trouble contacting Twitter