digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Penicillium chrysogenum
Penicillium notatum.jpg
Penicillium chrysogenum
Scientific classification
Kingdom: Fungi
Division: Ascomycota
Subdivision: Pezizomycotina
Class: Eurotiomycetes
Order: Eurotiales
Family: Trichocomaceae
Genus: Penicillium
Species: P. chrysogenum
Binomial name
Penicillium chrysogenum
Thom (1910)

Penicillium chrysogenum is a fungus, common in temperate and subtropical regions and can be found on salted food products,[1] but it is mostly found in indoor environments, especially in damp or waterdamaged buildings.[2] It was previously known as Penicillium notatum.[3] It has rarely been reported as a cause of human disease. It is the source of several β-lactam antibiotics, most significantly penicillin. Other secondary metabolites of P. chrysogenum include various penicillins, roquefortine C, meleagrin, chrysogine, xanthocillins, secalonic acids, sorrentanone, sorbicillin, and PR-toxin.[4]

Like the many other species of the genus Penicillium, P. chrysogenum usually reproduces by forming dry chains of spores (or conidia) from brush-shaped conidiophores. The conidia are typically carried by air currents to new colonisation sites. In P. chrysogenum the conidia are blue to blue-green, and the mold sometimes exudes a yellow pigment. However, P. chrysogenum cannot be identified based on colour alone. Observations of morphology and microscopic features are needed to confirm its identity and DNA sequencing is essential to distinguish it from closely related species such as Penicillium rubens. The sexual stage of P. chrysogenum was discovered in 2013 by mating cultures in the dark on oatmeal agar supplemented with biotin, after the mating types (MAT1-1 or MAT1-2) of the strains had been determined using PCR amplification.[5]

The airborne asexual spores of P. chrysogenum are important human allergens. Vacuolar and alkaline serine proteases have been implicated as the major allergenic proteins.[6]

P. chrysogenum has been used industrially to produce penicillin and xanthocillin X, to treat pulp mill waste, and to produce the enzymes polyamine oxidase, phospho-gluconate dehydrogenase, and glucose oxidase.[4][7]

Science and history[edit]

The discovery of penicillin ushered in a new age of antibiotics derived from microorganisms. Penicillin is an antibiotic isolated from growing Penicillium mold in a fermenter. The mold is grown in a liquid culture containing sugar and other nutrients including a source of nitrogen. As the mold grows, the sugar is used up and starts to make penicillin only after using up most of the nutrients for growth.

Penicillin was discovered in 1928 when Alexander Fleming's lab assistant left a window open overnight and had mold spores cover his Staphylococcus bacterial specimens in a petri dish.[8][9] At first, Fleming was very irritated at the contamination, but, as he was about to throw the specimens away, he noticed something interesting. He looked under the microscope at the bacteria surrounding the blue-green mold and noticed that many were dead or dying. This later turned out to have been due to the mold's prevention of the bacteria from making new cell walls and reproducing. He identified the mold as Penicillium notatum, which releases the antibiotic penicillin G into the medium. (This identification has been subsequently shown to be incorrect: the fungal species was actually Penicillium rubens).[10] After this, he did some testing on humans and animals and discovered that not only did it kill bacteria but it was suitable for use as a medication in humans and animals. However, the discovery did not attract much attention until the 1940s, when Howard Florey, Norman Heatley, and Ernst Chain developed methods for mass production and application in humans, incited by the urgent war-time need for antibacterial agents. The work of Andrew J. Moyer was important in these early developments.

At this point, though the drug had shown success in treating numerous bacterial diseases, it was still so difficult to produce and so dilute that it was not feasible to produce quantities large enough for mass production, and so an effort was begun to find a strain of Penicillium with a higher rate of production of penicillin. Army pilots sent back soil from around the world to be tested for the right kind of mold.[citation needed] Even the people of Peoria, Illinois were told to bring in any molds that they found around their homes.[citation needed] It has also been said[where?] that the scientists working on this project kept an eye out for similar-looking molds while grocery shopping or when they were cleaning around the kitchen especially their refrigerators.[citation needed]

It was by these means that Penicillium chrysogenum was discovered, on a cantaloupe from a grocery store in Peoria, Illinois.[11] The fungus isolated from this cantaloupe produced several hundred times as much penicillin as Fleming's original cultures of Penicillium notatum. Subcultures of this fungus were then irradiated with X-rays and UV rays in an attempt to cause a mutation in the fungus that would lead to an increase in penicillin yield. The effort was successful, and a mutant strain that yielded more than a thousand times the penicillin of Fleming's original culture was produced and cultured.[citation needed] This discovery, in combination with vastly improved methods of culturing the fungus based on the principle of aerating the culture medium, resulted in the ability to mass-produce penicillin in quantities great enough for distribution and mass use in the United States Army, and later within the British armed service and hospitals, in WWII.

Genetics and evolution[edit]

The ability to produce penicillin appears to have evolved over thousands of years, and is shared with several other related fungi. It is believed to confer a selective advantage during competition with bacteria for food sources.[citation needed] However, some bacteria have developed the ability to survive penicillin exposure by producing penicillinases, enzymes that degrade penicillin.[citation needed] Penicillinase production is one mechanism by which bacteria can become penicillin resistant.

The principal genes responsible for producing penicillin, pcbAB, pcbC and penDE are closely linked, forming a cluster on chromosome I.[12] Some high-producing Penicillium chrysogenum strains used for the industrial production of penicillin have been shown to have multiple tandem copies of the penicillin gene cluster.[13]

References[edit]

  1. ^ Samson RA, Houbraken J, Thrane U, Frisvad JC & Andersen B. (2010). Food and Indoor Fungi. CBS-KNAW- Fungal Biodiversity Centre, Utrecht, the Netherlands. pp. 1-398.
  2. ^ Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS & Larsen LS. 2011. Associations between fungal species and water damaged building materials. Applied and Environmental Microbiology. In Press
  3. ^ Samson RA, Hadlok R, Stolk AC (1977). "A taxonomic study of the Penicillium chrysogenum series". Antonie van Leeuwenhoek 43 (2): 169–175. doi:10.1007/BF00395671. PMID 413477. 
  4. ^ a b de Hoog GS, Guarro J, Gené J, Figueras F (2000), Atlas of Clinical Fungi - 2nd Edition, Centraalbureau voor Schimmelcultures (Utrecht) 
  5. ^ Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger B, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kückde U (2013), Sexual reproduction and mating-type–mediated strain development in the penicillin-producing fungus Penicillium chrysogenum, Proc. Natl. Acad. Sci. U.S.A., PNAS Early Edition, doi:10.1073/pnas.1217943110 
  6. ^ Shen HD, Chou H, Tam MF, Chang CY, Lai HY, Wang SR (2003). "Molecular and immunological characterization of Pen ch 18, the vacuolar serine protease major allergen of Penicillium chrysogenum". Allergy 58 (10): 993–1002. doi:10.1034/j.1398-9995.2003.00107.x. PMID 14510716. 
  7. ^ Raper KB, Thom C (1949), A manual of the Penicillia, Williams & Wilkins Company (Baltimore) 
  8. ^ Diggins F (1999). "The true history of the discovery of penicillin, with refutation of the misinformation in the literature". Br J Biomed Sci 56 (2): 83–93. PMID 10695047. 
  9. ^ Ligon B (2004). "Penicillin: its discovery and early development". Semin Pediatr Infect Dis 15 (1): 52–7. doi:10.1053/j.spid.2004.02.001. PMID 15175995. 
  10. ^ Houbraken J, Frisvad JC, Samson RA (2011) "Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens". IMA Fungus 2(1):87-95
  11. ^ http://www.ars.usda.gov/is/timeline/penicillin.htm
  12. ^ Martín JF, Gutiérrez S, Fernández FJ, et al. (1994). "Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins". Antonie Van Leeuwenhoek 65 (3): 227–243. doi:10.1007/BF00871951. PMID 7847890. 
  13. ^ Fierro F, Barredo JL, Díez B, Gutierrez S, Fernández FJ, Martín JF (1995). "The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences". Proc. Natl. Acad. Sci. U.S.A. 92 (13): 6200–6204. doi:10.1073/pnas.92.13.6200. PMC 41670. PMID 7597101. 

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Penicillium_chrysogenum — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
190 videos foundNext > 

Penicillium: The Good, Bad & Ugly of this Common Indoor Contaminant

There are over 300 species of Penicillium. It is perhaps best known as the fungus (P. Chrysogenum) that produces penicillin, a molecule that has saved countl...

Glass work of Penicillium chrysogenum

I made a Penicillium chrysogenum from glass. It is a popular animation character of "Moyashi-mon".

1928 Discovery of Penicillin by Alexander Fleming

James Burke gives his alternative view of change in Connections2 episode 9 "the Big Spin" WIKI Penicillin History: Fleming recounted that the date of his dis...

Mucegaiul verde Penicillium chrysogenum, mucegaiul alb, Mucor mucedo

M.R.S.A. Team- Three's Company MRSA, PENICILLIUM NOTATUM, & VARICELLA ZOSTER VIRUS

Mr. El-Rady's Secret A team's video for the microbiology microbullogy assignment on MSRA, Varicella Zoster Virus, and Penicillium notatum.

Alles über Penicillium notatum - 2 Minuten Kurzwissen

Hallo, heute habe ich es mal wieder geschafft ein neues Video hochzuladen. In diesem Video geht es um das Antibiotika Pencillium notatum oder auch besser bek...

Mucegai verde albastrui -penicillium notatum

Penicillium notatum pe Fistulina hepatica pe Quercus robur sau din povestea lantului trofic

Traducere aproximativa: mucegai pe ciuperca pe copac (stejar);

PENICILINA: DESCUBRIMIENTO Y PRODUCCIÓN

El descubrimiento de la penicilina ha sido presentado como un ejemplo "icónico" de cómo procede el método científico a través de la observación, y de la habi...

Fleming.Historia Real-Producciones Vicari.(Juan Franco Lazzarini)

Sir Alexander Fleming (Darvel, Escocia, 6 de agosto de 1881 -- Londres, 11 de marzo de 1955) fue un científico escocés famoso por descubrir la enzima antimic...

190 videos foundNext > 

6 news items

The Drinks Business

Biobased Digest
Sun, 28 Sep 2014 17:22:30 -0700

Reporting in the Journal of Chemical Technology and Biotechnology, Swinburne PhD candidate Avinash Karpe used four fungi — Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and Penicillium citrinum — to degrade the stream of skins, ...

tce today

tce today
Thu, 25 Sep 2014 04:37:30 -0700

Karpe uses four fungi, Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and Penicillium citrinum, all of which produce enzymes which break down the components of winery waste. He incubated the fungi with the waste for 1–3 days.
 
Australian Life Scientist
Wed, 01 Oct 2014 06:52:30 -0700

Using a 'cocktail' of four fungi - Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and Penicillium citrinum, in a one-litre bioreactor - Karpe succeeded in breaking down the biomass, with noticeable increases in enzyme activity and ...

BeverageDaily.com

BeverageDaily.com
Tue, 30 Sep 2014 03:00:40 -0700

Using a 'cocktail' of four fungi – Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and Penicillium citrinum, in a one litre bioreactor, Karpe can break down grape biomass, with an increase in enzyme activity and lignin degradation.

Laborpraxis

Laborpraxis
Fri, 24 Oct 2014 02:05:37 -0700

... aus dem Bakterium Penicillium chrysogenum durch den Mediziner Alexander Flemming im Jahr 1928 vor. Die pharmazeutische Industrie stellt heute mit einem Umsatzvolumen von weltweit rund 962 Mrd. Dollar (2012) einem zentralen Industriezweig dar.

WDR Nachrichten

WDR Nachrichten
Tue, 14 Oct 2014 14:56:15 -0700

Nach Kriegsende kauft Hoechst vom US -Konzern Merck die Lizenz für das "penicillium chrysogenum", den bis dato ergiebigsten Pilzstamm des Penicilliums. Damit kann nun auch in Frankfurt die industrielle Massenfertigung starten. Im August 1950 eröffnet ...
Loading

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight