digplanet beta 1: Athena
Share digplanet:


Applied sciences






















Penicillium chrysogenum
Penicillium notatum.jpg
Penicillium chrysogenum
Scientific classification
Kingdom: Fungi
Division: Ascomycota
Subdivision: Pezizomycotina
Class: Eurotiomycetes
Order: Eurotiales
Family: Trichocomaceae
Genus: Penicillium
Species: P. chrysogenum
Binomial name
Penicillium chrysogenum
Thom (1910)

Penicillium chrysogenum is a fungus, common in temperate and subtropical regions and can be found on salted food products,[1] but it is mostly found in indoor environments, especially in damp or waterdamaged buildings.[2] It was previously known as Penicillium notatum.[3] It has rarely been reported as a cause of human disease.[how?] It is the source of several β-lactam antibiotics, most significantly penicillin. Other secondary metabolites of P. chrysogenum include roquefortine C, meleagrin, chrysogine, xanthocillins, secalonic acids, sorrentanone, sorbicillin, and PR-toxin.[4]

Like the many other species of the genus Penicillium, P. chrysogenum usually reproduces by forming dry chains of spores (or conidia) from brush-shaped conidiophores. The conidia are typically carried by air currents to new colonisation sites. In P. chrysogenum the conidia are blue to blue-green, and the mold sometimes exudes a yellow pigment. However, P. chrysogenum cannot be identified based on colour alone. Observations of morphology and microscopic features are needed to confirm its identity and DNA sequencing is essential to distinguish it from closely related species such as Penicillium rubens. The sexual stage of P. chrysogenum was discovered in 2013 by mating cultures in the dark on oatmeal agar supplemented with biotin, after the mating types (MAT1-1 or MAT1-2) of the strains had been determined using PCR amplification.[5]

The airborne asexual spores of P. chrysogenum are important human allergens. Vacuolar and alkaline serine proteases have been implicated as the major allergenic proteins.[6]

P. chrysogenum has been used industrially to produce penicillin and xanthocillin X, to treat pulp mill waste, and to produce the enzymes polyamine oxidase, phospho-gluconate dehydrogenase, and glucose oxidase.[4][7]

Science and history[edit]

The discovery of penicillin ushered in a new age of antibiotics derived from microorganisms. Penicillin is an antibiotic isolated from growing Penicillium mold in a fermenter. The mold is grown in a liquid culture containing sugar and other nutrients including a source of nitrogen. As the mold grows, the sugar is used up and starts to make penicillin only after using up most of the nutrients for growth.

Penicillin was discovered in 1928 when Alexander Fleming's lab assistant left a window open overnight and had mold spores cover his Staphylococcus bacterial specimens in a petri dish.[8][9] At first, Fleming was very irritated at the contamination, but, as he was about to throw the specimens away, he noticed something interesting. He looked under the microscope at the bacteria surrounding the blue-green mold and noticed that many were dead or dying. This later turned out to have been due to the mold's prevention of the bacteria from making new cell walls and reproducing. He identified the mold as Penicillium notatum, which releases the antibiotic penicillin G into the medium. (This identification has been subsequently shown to be incorrect: the fungal species was actually Penicillium rubens).[10] After this, he did some testing on humans and animals and discovered that not only did it kill bacteria but it was suitable for use as a medication in humans and animals. However, the discovery did not attract much attention until the 1940s, when Howard Florey, Norman Heatley, and Ernst Chain developed methods for mass production and application in humans, incited by the urgent war-time need for antibacterial agents. The work of Andrew J. Moyer was important in these early developments.

At this point, though the drug had shown success in treating numerous bacterial diseases, it was still so difficult to produce and so dilute that it was not feasible to produce quantities large enough for mass production, and so an effort was begun to find a strain of Penicillium with a higher rate of production of penicillin. Army pilots sent back soil from around the world to be tested for the right kind of mold.[citation needed] Even the people of Peoria, Illinois were told to bring in any molds that they found around their homes.[citation needed] It has also been said[where?] that the scientists working on this project kept an eye out for similar-looking molds while grocery shopping or when they were cleaning around the kitchen especially their refrigerators.[citation needed]

It was by these means that Penicillium chrysogenum was discovered, on a cantaloupe from a grocery store in Peoria, Illinois.[11] The fungus isolated from this cantaloupe produced several hundred times as much penicillin as Fleming's original cultures of Penicillium notatum. Subcultures of this fungus were then irradiated with X-rays and UV rays in an attempt to cause a mutation in the fungus that would lead to an increase in penicillin yield. The effort was successful, and a mutant strain that yielded more than a thousand times the penicillin of Fleming's original culture was produced and cultured.[citation needed] This discovery, in combination with vastly improved methods of culturing the fungus based on the principle of aerating the culture medium, resulted in the ability to mass-produce penicillin in quantities great enough for distribution and mass use in the United States Army, and later within the British armed service and hospitals, in WWII.

Genetics and evolution[edit]

The ability to produce penicillin appears to have evolved over thousands of years, and is shared with several other related fungi. It is believed to confer a selective advantage during competition with bacteria for food sources.[citation needed] However, some bacteria have developed the ability to survive penicillin exposure by producing penicillinases, enzymes that degrade penicillin.[citation needed] Penicillinase production is one mechanism by which bacteria can become penicillin resistant.

The principal genes responsible for producing penicillin, pcbAB, pcbC and penDE are closely linked, forming a cluster on chromosome I.[12] Some high-producing Penicillium chrysogenum strains used for the industrial production of penicillin have been shown to have multiple tandem copies of the penicillin gene cluster.[13]


  1. ^ Samson RA, Houbraken J, Thrane U, Frisvad JC & Andersen B. (2010). Food and Indoor Fungi. CBS-KNAW- Fungal Biodiversity Centre, Utrecht, the Netherlands. pp. 1-398.
  2. ^ Andersen B, Frisvad JC, Søndergaard I, Rasmussen IS & Larsen LS. 2011. Associations between fungal species and water damaged building materials. Applied and Environmental Microbiology. In Press
  3. ^ Samson RA, Hadlok R, Stolk AC (1977). "A taxonomic study of the Penicillium chrysogenum series". Antonie van Leeuwenhoek 43 (2): 169–175. doi:10.1007/BF00395671. PMID 413477. 
  4. ^ a b de Hoog GS, Guarro J, Gené J, Figueras F (2000), Atlas of Clinical Fungi - 2nd Edition, Centraalbureau voor Schimmelcultures (Utrecht) 
  5. ^ Böhm J, Hoff B, O’Gorman CM, Wolfers S, Klix V, Binger B, Zadra I, Kürnsteiner H, Pöggeler S, Dyer PS, Kückde U (2013), "Sexual reproduction and mating-type–mediated strain development in the penicillin-producing fungus Penicillium chrysogenum", Proc. Natl. Acad. Sci. U.S.A., PNAS Early Edition, doi:10.1073/pnas.1217943110, PMC 3557024, PMID 23307807 
  6. ^ Shen HD, Chou H, Tam MF, Chang CY, Lai HY, Wang SR (2003). "Molecular and immunological characterization of Pen ch 18, the vacuolar serine protease major allergen of Penicillium chrysogenum". Allergy 58 (10): 993–1002. doi:10.1034/j.1398-9995.2003.00107.x. PMID 14510716. 
  7. ^ Raper KB, Thom C (1949), A manual of the Penicillia, Williams & Wilkins Company (Baltimore) 
  8. ^ Diggins F (1999). "The true history of the discovery of penicillin, with refutation of the misinformation in the literature". Br J Biomed Sci 56 (2): 83–93. PMID 10695047. 
  9. ^ Ligon B (2004). "Penicillin: its discovery and early development". Semin Pediatr Infect Dis 15 (1): 52–7. doi:10.1053/j.spid.2004.02.001. PMID 15175995. 
  10. ^ Houbraken, J; Frisvad, JC; Samson, RA (2011). "Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens". IMA Fungus 2 (1): 87–95. doi:10.5598/imafungus.2011.02.01.12. PMC 3317369. PMID 22679592. 
  11. ^ http://www.ars.usda.gov/is/timeline/penicillin.htm
  12. ^ Martín JF, Gutiérrez S, Fernández FJ et al. (1994). "Expression of genes and processing of enzymes for the biosynthesis of penicillins and cephalosporins". Antonie Van Leeuwenhoek 65 (3): 227–243. doi:10.1007/BF00871951. PMID 7847890. 
  13. ^ Fierro F, Barredo JL, Díez B, Gutierrez S, Fernández FJ, Martín JF (1995). "The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences". Proc. Natl. Acad. Sci. U.S.A. 92 (13): 6200–6204. doi:10.1073/pnas.92.13.6200. PMC 41670. PMID 7597101. 

External links[edit]

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Penicillium_chrysogenum — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
79 videos foundNext > 

Penicillium: The Good, Bad & Ugly of this Common Indoor Contaminant

There are over 300 species of Penicillium. It is perhaps best known as the fungus (P. Chrysogenum) that produces penicillin, a molecule that has saved countless lives as an antibiotic. ...


El descubrimiento de la penicilina ha sido presentado como un ejemplo "icónico" de cómo procede el método científico a través de la observación, y de la habilidad singular de Alexander...

Glass work of Penicillium chrysogenum

I made a Penicillium chrysogenum from glass. It is a popular animation character of "Moyashi-mon".

Mucegaiul verde Penicillium chrysogenum, mucegaiul alb, Mucor mucedo

1928 Discovery of Penicillin by Alexander Fleming

James Burke gives his alternative view of change in Connections2 episode 9 "the Big Spin" WIKI Penicillin History: Fleming recounted that the date of his discovery of penicillin was on the...

Fleming.Historia Real-Producciones Vicari.(Juan Franco Lazzarini)

Sir Alexander Fleming (Darvel, Escocia, 6 de agosto de 1881 -- Londres, 11 de marzo de 1955) fue un científico escocés famoso por descubrir la enzima antimicrobiana llamada lisozima. También...

Grandes Personajes - Alexander Fleming [UCSG Televisión]

fue un científico escocés famoso por descubrir la enzima antimicrobiana llamada lisozima. También fue el primero en observar los efectos antibiótico de la penicilina obtenido a partir del...

PLACE Memorial ALEXANDER FLEMING monument Xixón - Gijón monumento

VIDEO ILUSTRACIÓN: Monumento a Alexander Fleming, situado en el Parque de Isabel la Católica en la ciudad de Gijón. Alexander Fleming (6 de agosto de 1881 -- 11 de marzo de 1955) fue un...

Bioprozesstechnik 2009 - Inokulation des Fermenters

Übungen zur Bioprozesstechnik 2009 an der Universität Innsbruck. Beimpfen des kleinen Laborfermenters KLF mit der Vorkultur von Penicillium chrysogenum.

Konkret - Das Servicemagazin - MIKROVERSUM - 04 Schimmel.mp4

Es gibt auch Schimmelpilze, die eine für den Menschen ausgesprochen positive Wirkung haben. Der bekannteste ist hier wohl Penicillium Chrysogenum. Sein Produkt wird Penicilin genannt, und...

79 videos foundNext > 

114 news items


Mon, 16 Mar 2015 09:52:30 -0700

Amongst the bacteria encountered these include Aspergillus oryzae, one of the key bacteria used in brewing sake; Penicillium chrysogenum, which produces antibiotics; and Trichophyton rubrum, the cause of athlete's foot. The human characters are good ...

Medical Research News and Interviews on MedicalResearch.com (blog)

Medical Research News and Interviews on MedicalResearch.com (blog)
Tue, 03 Mar 2015 16:56:15 -0800

This process involved harnessing the productive efficiency of an industrial strain of the beta-lactam (penicillin-type) antibiotic producing fungus Penicillium chrysogenum. The beta-lactam antibiotic genes were deleted from this organism, and replaced ...


Science 2.0
Tue, 08 Jan 2013 08:52:37 -0800

In biology, you learned that the penicillin-producing mold fungus Penicillium chrysogenum only reproduces asexually through spores - it has been taught that way for much of the last century. But a group of researchers now say that the fungus also has a ...
El Sol de México
Sun, 08 Mar 2015 04:03:45 -0700

Alexander Fleming, fue un científico escocés famoso por descubrir la enzima antimicrobiana llamada lisozima. También fue el primero en observar los efectos antibióticos de la penicilina obtenidos a partir del hongo Penicillium chrysogenum. Los dos ...

Metro TV News

Metro TV News
Fri, 13 Mar 2015 20:11:41 -0700

Ia kemudian menumbuhkan sebuah kultur murni dan menemukan Penicillium yang kemudian dikenal sebagai Penicillium chrysogenum.Fleming memberikan istilah `penisilin' untuk menggambarkan hasil filtrasi dari kultur mikrobiologis Penicillium. Pada 14 ...
Fri, 27 Feb 2015 01:00:00 -0800

Reprogramming the antibiotics-producing fungus Penicillium chrysogenum, with discovery and engineering of a cytochrome P450 enzyme involved in the hydroxylation of the precursor compactin, enabled high level fermentation of the correct form of ...
Munchies_ Food by VICE
Thu, 09 Oct 2014 08:08:17 -0700

With the help of a fungi cocktail (consisting of Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum, and Penicillium citrinum), Karpe breaks winery waste material down into basic carbohydrates that can be fermented, producing biofuels ...
Tue, 23 Sep 2014 02:26:56 -0700

Using a 'cocktail' of four fungi – Trichoderma harzianum, Aspergillus niger, Penicillium chrysogenum and Penicillium citrinum, in a one litre bioreactor, Mr Karpe succeeded in breaking down the biomass, with noticeable increases in enzyme activity and ...

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight