digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Parabola, showing various features

A parabola (pron.: /pəˈræbələ/; plural parabolas or parabolae, adjective parabolic, from Greek: παραβολή) is a two-dimensional, mirror-symmetrical curve, which is approximately U-shaped when oriented as shown in the diagram, but which can be in any orientation in its plane. It fits any of several superficially different mathematical descriptions which can all be proved to define curves of exactly the same shape.

One description of a parabola involves a point (the focus) and a line (the directrix). The focus does not lie on the directrix. The locus of points in that plane that are equidistant from both the directrix and the focus is the parabola. Another description of a parabola is as a conic section, created from the intersection of a right circular conical surface and a plane, which is parallel to a straight line on the conical surface and perpendicular to another plane which includes both the axis of the cone and also the same straight line on its surface.[1] A third description is algebraic. A parabola is a graph of a quadratic function, such as $y=x^2.$

The line perpendicular to the directrix and passing through the focus (that is, the line that splits the parabola through the middle) is called the "axis of symmetry". The point on the axis of symmetry that intersects the parabola is called the "vertex", and it is the point where the curvature is greatest. The distance between the vertex and the focus, measured along the axis of symmetry, is the "focal length". The "latus rectum" is the chord of the parabola which is parallel to the directrix and passes through the focus. Parabolas can open up, down, left, right, or in some other arbitrary direction. Any parabola can be repositioned and rescaled to fit exactly on any other parabola — that is, all parabolas are geometrically similar.

Parabolas have the property that, if they are made of material that reflects light, then light which enters a parabola travelling parallel to its axis of symmetry is reflected to its focus, regardless of where on the parabola the reflection occurs. Conversely, light that originates from a point source at the focus is reflected ("collimated") into a parallel beam, leaving the parabola parallel to the axis of symmetry. The same effects occur with sound and other forms of energy. This reflective property is the basis of many practical uses of parabolas.

The parabola has many important applications, from a parabolic antenna or parabolic microphone to automobile headlight reflectors to the design of ballistic missiles. They are frequently used in physics, engineering, and many other areas.

Strictly, the adjective parabolic should be applied only to things that are shaped as a parabola, which is a two-dimensional shape. However, as shown in the last paragraph, the same adjective is commonly used for three-dimensional objects, such as parabolic reflectors, which are really paraboloids. Sometimes, the noun parabola is also used to refer to these objects. Though not perfectly correct, this usage is generally understood.

Parabolic curve showing directrix (L) and focus (F). The distance from any point on the parabola to the focus (PnF) equals the perpendicular distance from the same point on the parabola to the directrix (PnQn).
Parabolic curve showing chord (L), focus (F), and vertex (V). L is an arbitrary chord of the parabola perpendicular to its axis of symmetry, which passes through V and F. (The ends of the chord are not shown here.) The lengths of all paths Qn - Pn - F are the same, equalling the distance between the chord L and the directrix. (See previous diagram above.) This is similar to saying that a parabola is an ellipse, but with one focal point at infinity. It also directly implies, by the wave nature of light, that parallel light arriving along the lines Qn - Pn will be reflected to converge at F. A linear wavefront along L is concentrated, after reflection, to the one point where all parts of it have travelled equal distances and are in phase, namely F. No consideration of angles is required.
Parabolic graph of quadratic function y=6x2+4x-8
A parabola obtained as the intersection of a cone with a plane parallel to a straight line on its surface. The plane of the lower diagram includes the axis of the cone and the straight line on its surface, which runs down the right-hand edge of the triangular section. The plane that intersects the cone to form the parabola is perpendicular to the plane of the diagram, and therefore appears as a line.
The parabola is a member of the family of conic sections

## History

Parabolic compass designed by Leonardo da Vinci

The earliest known work on conic sections was by Menaechmus in the fourth century BC. He discovered a way to solve the problem of doubling the cube using parabolae. (The solution, however, does not meet the requirements imposed by compass and straightedge construction.) The area enclosed by a parabola and a line segment, the so-called "parabola segment", was computed by Archimedes via the method of exhaustion in the third century BC, in his The Quadrature of the Parabola. The name "parabola" is due to Apollonius, who discovered many properties of conic sections. It means "application", referring to "application of areas" concept, that has a connection with this curve, as Apollonius had proved.[2] The focus–directrix property of the parabola and other conics is due to Pappus.

Galileo showed that the path of a projectile follows a parabola, a consequence of uniform acceleration due to gravity.

The idea that a parabolic reflector could produce an image was already well known before the invention of the reflecting telescope.[3] Designs were proposed in the early to mid seventeenth century by many mathematicians including René Descartes, Marin Mersenne,[4] and James Gregory.[5] When Isaac Newton built the first reflecting telescope in 1668 he skipped using a parabolic mirror because of the difficulty of fabrication, opting for a spherical mirror. Parabolic mirrors are used in most modern reflecting telescopes and in satellite dishes and radar receivers.[6]

## Equation in Cartesian coordinates

Let the directrix be the line x = −p and let the focus be the point (p, 0). If (xy) is a point on the parabola then, by Pappus' definition of a parabola, it is the same distance from the directrix as the focus; in other words:

$x+p=\sqrt{(x-p)^2+y^2}.$

Squaring both sides and simplifying produces

$y^2 = 4px\$

as the equation of the parabola. By interchanging the roles of x and y one obtains the corresponding equation of a parabola with a vertical axis as

$x^2 = 4py.\$

The equation can be generalized to allow the vertex to be at a point other than the origin by defining the vertex as the point (hk). The equation of a parabola with a vertical axis then becomes

$(x-h)^{2}=4p(y-k).\,$

The last equation can be rewritten

$y=ax^2+bx+c\,$

so the graph of any function which is a polynomial of degree 2 in x is a parabola with a vertical axis.

More generally, a parabola is a curve in the Cartesian plane defined by an irreducible equation — one that does not factor as a product of two not necessarily distinct linear equations — of the general conic form

$A x^{2} + B xy + C y^{2} + D x + E y + F = 0 \,$

with the parabola restriction that

$B^{2} = 4 AC,\,$

where all of the coefficients are real and where A and C are not both zero. The equation is irreducible if and only if the determinant of the 3×3 matrix

$\begin{bmatrix} A & B/2 & D/2 \\ B/2 & C & E/2 \\ D/2 & E/2 & F \end{bmatrix}.$

is non-zero: that is, if (ACB2/4)F + BED/4 − CD2/4 − AE2/4 ≠ 0. The reducible case, also called the degenerate case, gives a pair of parallel lines, possibly real, possibly imaginary, and possibly coinciding with each other.[7]

## Conic section and quadratic form

 Cone with cross-sections

The diagram represents a cone with its axis vertical.[8] The point A is its apex. A horizontal cross-section of the cone passes through the points B, E, C, and D. This cross-section is circular, but appears elliptical when viewed obliquely, as is shown in the diagram. An inclined cross-section of the cone, shown in pink, is inclined from the vertical by the same angle, θ, as the side of the cone. According to the definition of a parabola as a conic section, the boundary of this pink cross-section, EPD, is a parabola. The cone also has another horizontal cross-section, which passes through the vertex, P, of the parabola, and is also circular, with a radius which we will call r. Its centre is V, and PK is a diameter. The chord BC is a diameter of the lower circle, and passes through the point M, which is the midpoint of the chord ED. Let us call the lengths of the line segments EM and DM x, and the length of PM y.

Thus:

$BM=2y\sin{\theta}.$   (The triangle BPM is isosceles.)
$CM=2r.$   (PMCK is a parallelogram.)

Using the intersecting chords theorem on the chords BC and DE, we get:

$EM \cdot DM=BM \cdot CM$

Substituting:

$x^2=4ry\sin{\theta}$

Rearranging:

$y=\frac{x^2}{4r\sin{\theta}}$

For any given cone and parabola, r and θ are constants, but x and y are variables which depend on the arbitrary height at which the horizontal cross-section BECD is made. This last equation is a simple quadratic one which describes how x and y are related to each other, and therefore defines the shape of the parabolic curve. This shows that the definition of a parabola as a conic section implies its definition as the graph of a quadratic function. Both definitions produce curves of exactly the same shape.

### Focal length

It is proved below that if a parabola has an equation of the form y = ax2, where a is a constant, then $a=\frac{1}{4f},$ where f is its focal length. Comparing this with the last equation above shows that the focal length of the above parabola is r sin θ.

### Position of the focus

If a line is perpendicular to the plane of the parabola and passes through the centre, V, of the horizontal cross-section of the cone passing through P, then the point where this line intersects the plane of the parabola is the focus of the parabola, which is marked F on the diagram. Angle VPF is complementary to θ, and angle PVF is complementary to angle VPF, therefore angle PVF is θ. Since the length of PV is r, this construction correctly places the focus on the axis of symmetry of the parabola, at a distance r sin θ from its vertex.

## Other geometric definitions

A parabola may also be characterized as a conic section with an eccentricity of 1. As a consequence of this, all parabolae are similar, meaning that while they can be different sizes, they are all the same shape. A parabola can also be obtained as the limit of a sequence of ellipses where one focus is kept fixed as the other is allowed to move arbitrarily far away in one direction. In this sense, a parabola may be considered an ellipse that has one focus at infinity. The parabola is an inverse transform of a cardioid.

A parabola has a single axis of reflective symmetry, which passes through its focus and is perpendicular to its directrix. The point of intersection of this axis and the parabola is called the vertex. A parabola spun about this axis in three dimensions traces out a shape known as a paraboloid of revolution.

The parabola is found in numerous situations in the physical world (see below).

## Equations

### Cartesian

In the following equations $h$ and $k$ are the coordinates of the vertex, $(h,k)$, of the parabola and $p$ is the distance from the vertex to the focus and the vertex to the directrix.

#### Vertical axis of symmetry

$(x - h)^2 = 4p(y - k) \,$
$y =\frac{(x-h)^2}{4p}+k\,$
$y = ax^2 + bx + c \,$

where

$a = \frac{1}{4p}; \ \ b = \frac{-h}{2p}; \ \ c = \frac{h^2}{4p} + k; \ \$
$h = \frac{-b}{2a}; \ \ k = \frac{4ac - b^2}{4a}$.

Parametric form:

$x(t) = 2pt + h; \ \ y(t) = pt^2 + k \,$

#### Horizontal axis of symmetry

$(y - k)^2 = 4p(x - h) \,$
$x =\frac{(y - k)^2}{4p} + h;\ \,$
$x = ay^2 + by + c \,$

where

$a = \frac{1}{4p}; \ \ b = \frac{-k}{2p}; \ \ c = \frac{k^2}{4p} + h; \ \$
$h = \frac{4ac - b^2}{4a}; \ \ k = \frac{-b}{2a}$.

Parametric form:

$x(t) = pt^2 + h; \ \ y(t) = 2pt + k \,$

#### General parabola

The general form for a parabola is

$(\alpha x+\beta y)^2 + \gamma x + \delta y + \epsilon = 0 \,$

This result is derived from the general conic equation given below:

$Ax^2 +Bxy + Cy^2 + Dx + Ey + F = 0 \,$

and the fact that, for a parabola,

$B^2=4AC \,$.

The equation for a general parabola with a focus point F(u, v), and a directrix in the form

$ax+by+c=0 \,$

is

$\frac{\left(ax+by+c\right)^2}{{a}^{2}+{b}^{2}}=\left(x-u\right)^2+\left(y-v\right)^2 \,$

### Latus rectum, semilatus rectum, and polar coordinates

In polar coordinates, a parabola with the focus at the origin and the directrix parallel to the y-axis, is given by the equation

$r (1 + \cos \theta) = l \,$

where l is the semilatus rectum: the distance from the focus to the parabola itself, measured along a line perpendicular to the axis of symmetry. Note that this equals the perpendicular distance from the focus to the directrix, and is twice the focal length, which is the distance from the focus to the vertex of the parabola.

The latus rectum is the chord that passes through the focus and is perpendicular to the axis of symmetry. It has a length of 2l.

### Gauss-mapped form

A Gauss-mapped form: $(\tan^2\phi,2\tan\phi)$ has normal $(\cos\phi,\sin\phi)$.

## Proof of the reflective property

Reflective property of a parabola

The reflective property states that, if a parabola can reflect light, then light which enters it travelling parallel to the axis of symmetry is reflected to the focus. This is derived from the wave nature of light in the caption to a diagram near the top of this article. This derivation is valid, but may not be satisfying to readers who would prefer a mathematical approach. In the following proof, the fact that every point on the parabola is equidistant from the focus and from the directrix is taken as axiomatic.

Consider the parabola $y=x^2.$ Since all parabolas are similar, this simple case represents all others. The right-hand side of the diagram shows part of this parabola.

Construction and definitions

The point E is an arbitrary point on the parabola, with coordinates $(x,x^2).$ The focus is F, the vertex is A (the origin), and the line FA (the y-axis) is the axis of symmetry. The line EC is parallel to the axis of symmetry, and intersects the x-axis at D. The point C is located on the directrix (which is not shown, to minimize clutter). The point B is the midpoint of the line segment FC.

Deductions

Measured along the axis of symmetry, the vertex, A, is equidistant from the focus, F, and from the directrix. Correspondingly, since C is on the directrix, the y-coordinates of F and C are equal in absolute value and opposite in sign. B is the midpoint of FC, so its y-coordinate is zero, so it lies on the x-axis. Its x-coordinate is half that of E, D, and C, i.e. $\frac{{x}}{{2}}.$ The slope of the line BE is the quotient of the lengths of ED and BD, which is $\frac{x^2}{\left(\frac{x}{2}\right)},$ which comes to $2x.$

But $2x$ is also the slope (first derivative) of the parabola at E. Therefore the line BE is the tangent to the parabola at E.

The distances EF and EC are equal because E is on the parabola, F is the focus and C is on the directrix. Therefore, since B is the midpoint of FC, triangles FEB and CEB are congruent (three sides), which implies that the angles marked $\alpha$ are equal. (The angle above E is vertically opposite angle BEC.) This means that a ray of light which enters the parabola and arrives at E travelling parallel to the axis of symmetry will be reflected by the line BE so it travels along the line EF, as shown in red in the diagram (assuming that the lines can somehow reflect light). Since BE is the tangent to the parabola at E, the same reflection will be done by an infinitessimal arc of the parabola at E. Therefore, light that enters the parabola and arrives at E travelling parallel to the axis of symmetry of the parabola is reflected by the parabola toward its focus.

The point E has no special characteristics. This conclusion about reflected light applies to all points on the parabola, as is shown on the left side of the diagram. This is the reflective property.

### Tangent bisection property

The above proof, and the accompanying diagram, show that the tangent BE bisects the angle FEC. In other words, the tangent to the parabola at any point bisects the angle between the lines joining the point to the focus, and perpendicularly to the directrix.

### Alternative proofs

Parabola and tangent

The above proofs of the reflective and tangent bisection properties use a line of calculus. For readers who are not comfortable with calculus, the following alternative is presented.

In this diagram, F is the focus of the parabola, and T and U lie on its directrix. P is an arbitrary point on the parabola. PT is perpendicular to the directrix, and the line MP bisects angle FPT. Q is another point on the parabola, with QU perpendicular to the directrix. We know that FP=PT and FQ=QU. Clearly, QT>QU, so QT>FQ. All points on the bisector MP are equidistant from F and T, but Q is closer to F than to T. This means that Q is to the "left" of MP, i.e. on the same side of it as the focus. The same would be true if Q were located anywhere else on the parabola (except at the point P), so the entire parabola, except the point P, is on the focus side of MP. Therefore MP is the tangent to the parabola at P. Since it bisects the angle FPT, this proves the tangent bisection property.

The logic of the last paragraph can be applied to modify the above proof of the reflective property. It effectively proves the line BE to be the tangent to the parabola at E if the angles $\alpha$ are equal. The reflective property follows as shown previously.

## Two tangent properties

Let the line of symmetry intersect the parabola at point Q, and denote the focus as point F and its distance from point Q as f. Let the perpendicular to the line of symmetry, through the focus, intersect the parabola at a point T. Then (1) the distance from F to T is 2f, and (2) a tangent to the parabola at point T intersects the line of symmetry at a 45° angle.[9]:p.26

## Orthoptic property

Perpendicular tangents intersect on the directrix

If two tangents to a parabola are perpendicular to each other, then they intersect on the directrix. Conversely, two tangents which intersect on the directrix are perpendicular.

Proof

Without loss of generality, consider the parabola $y=x^2.$ Suppose that two tangents contact this parabola at the points $(p,p^2)$ and $(q,q^2).$ Their slopes are $2p$ and $2q,$ respectively. Thus the equation of the first tangent is of the form $y=2px+C,$ where $C$ is a constant. In order to make the line pass through $(p,p^2),$ the value of $C$ must be $-p^2,$ so the equation of this tangent is $y=2px-p^2.$ Likewise, the equation of the other tangent is $y=2qx-q^2.$ At the intersection point of the two tangents, $2px-p^2=2qx-q^2.$ Thus $2x(p-q)=p^2-q^2.$ Factoring the difference of squares, cancelling, and dividing by 2 gives $x=\frac{p+q}{2}.$ Substituting this into one of the equations of the tangents gives an expression for the y-coordinate of the intersection point: $y=2p\left(\frac{p+q}{2}\right)-p^2.$ Simplifying this gives $y=pq.$

We now use the fact that these tangents are perpendicular. The product of the slopes of perpendicular lines is −1, assuming that both of the slopes are finite. The slopes of our tangents are $2p$ and $2q,$, so $(2p)(2q)=-1,$ so $pq=-\frac{1}{4}.$ Thus the y-coordinate of the intersection point of the tangents is given by $y=-\frac{1}{4}.$ This is also the equation of the directrix of this parabola, so the two perpendicular tangents intersect on the directrix.

## Dimensions of parabolas with axes of symmetry parallel to the y-axis

These parabolas have equations of the form $y=ax^2+bx+c.$ By interchanging $x$ and $y,$ the parabolas' axes of symmetry become parallel to the x-axis.

 Some features of a parabola

### Coordinates of the vertex

The x-coordinate at the vertex is $x=-\frac{b}{2a}$, which is found by differentiating the original equation $y=ax^2+bx+c$, setting the resulting $dy/dx=2ax+b$ equal to zero (a critical point), and solving for $x$. Substitute this x-coordinate into the original equation to yield:

$y=a\left (-\frac{b}{2a}\right )^2 + b \left ( -\frac{b}{2a} \right ) + c.$

Simplifying:

$=\frac{ab^2}{4a^2} -\frac{b^2}{2a} + c$

Put terms over a common denominator

$=\frac{b^2}{4a} -\frac{2\cdot b^2}{2\cdot 2a} + c\cdot\frac{4a}{4a}$
$=\frac{-b^2+4ac}{4a}$
$=-\frac{b^2-4ac}{4a}=-\frac{D}{4a}$

where $D$ is the discriminant, $(b^2-4ac).$

Thus, the vertex is at point

$\left (-\frac{b}{2a},-\frac{D}{4a}\right ).$

### Coordinates of the focus

Since the axis of symmetry of this parabola is parallel with the y-axis, the x-coordinates of the focus and the vertex are equal. The coordinates of the vertex are calculated in the preceding section. The x-coordinate of the focus is therefore also $-\frac{b}{2a}.$

To find the y-coordinate of the focus, consider the point, P, located on the parabola where the slope is 1, so the tangent to the parabola at P is inclined at 45 degrees to the axis of symmetry. Using the reflective property of a parabola, we know that light which is initially travelling parallel to the axis of symmetry is reflected at P toward the focus. The 45-degree inclination causes the light to be turned 90 degrees by the reflection, so it travels from P to the focus along a line that is perpendicular to the axis of symmetry and to the y-axis. This means that the y-coordinate of P must equal that of the focus.

By differentiating the equation of the parabola and setting the slope to 1, we find the x-coordinate of P:

$y=ax^2+bx+c,$
$\frac{dy}{dx}=2ax+b=1$
$\therefore x=\frac{1-b}{2a}$

Substituting this value of $x$ in the equation of the parabola, we find the y-coordinate of P, and also of the focus:

$y=a\left(\frac{1-b}{2a}\right)^2+b\left(\frac{1-b}{2a}\right)+c$
$=a\left(\frac{1-2b+b^2}{4a^2}\right)+\left(\frac{b-b^2}{2a}\right)+c$
$=\left(\frac{1-2b+b^2}{4a}\right)+\left(\frac{2b-2b^2}{4a}\right)+c$
$=\frac{1-b^2}{4a}+c=\frac{1-(b^2-4ac)}{4a}=\frac{1-D}{4a}$

where $D$ is the discriminant, $(b^2-4ac),$ as is used in the "Coordinates of the vertex" section.

The focus is therefore the point:

$\left(-\frac{b}{2a},\frac{1-D}{4a}\right)$

### Axis of symmetry, focal length, and directrix

The above coordinates of the focus of a parabola of the form:

$y=ax^2+bx+c$

can be compared with the coordinates of its vertex, which are derived in the section "Coordinates of the vertex", above, and are:

$\left(\frac{-b}{2a},\frac{-D}{4a}\right)$

where $D=b^2-4ac.$

The axis of symmetry is the line which passes through both the focus and the vertex. In this case, it is vertical, with equation:

$x=-\frac{b}{2a}$.

The focal length of the parabola is the difference between the y-coordinates of the focus and the vertex:

$f=\left(\frac{1-D}{4a}\right)-\left(\frac{-D}{4a}\right)$
$=\frac{1}{4a}$

It is sometimes useful to invert this equation and use it in the form: $a=\frac{1}{4f}.$ See the section "Conic section and quadratic form", above.

Measured along the axis of symmetry, the vertex is the midpoint between the focus and the directrix. Therefore, the equation of the directrix is:

$y=-\frac{D}{4a}-\frac{1}{4a}=-\frac{1+D}{4a}$

## Length of an arc of a parabola

If a point X is located on a parabola which has focal length $f,$ and if $p$ is the perpendicular distance from X to the axis of symmetry of the parabola, then the lengths of arcs of the parabola which terminate at X can be calculated from $f$ and $p$ as follows, assuming they are all expressed in the same units.

$h=\frac{p}{2}$
$q=\sqrt{f^2+h^2}$
$s=\frac{hq}{f}+f\ln\left(\frac{h+q}{f}\right)$

This quantity, $s$, is the length of the arc between X and the vertex of the parabola.

The length of the arc between X and the symmetrically opposite point on the other side of the parabola is $2s.$

The perpendicular distance, $p$, can be given a positive or negative sign to indicate on which side of the axis of symmetry X is situated. Reversing the sign of $p$ reverses the signs of $h$ and $s$ without changing their absolute values. If these quantities are signed, the length of the arc between any two points on the parabola is always shown by the difference between their values of $s.$ The calculation can be simplified by using the properties of logarithms:

$s_1 - s_2 = \frac{h_1 q_1 - h_2 q_2}{f} +f \ln \left(\frac{h_1 + q_1}{h_2 + q_2}\right)$

This can be useful, for example, in calculating the size of the material needed to make a parabolic reflector or parabolic trough.

This calculation can be used for a parabola in any orientation. It is not restricted to the situation where the axis of symmetry is parallel to the y-axis.

(Note: In the above calculation, the square-root, $q$, must be positive. The quantity ln(a), sometimes written as loge(a), is the natural logarithm of a, i.e. its logarithm to base "e".)

## Parabolae in the physical world

In nature, approximations of parabolae and paraboloids (such as catenary curves) are found in many diverse situations. The best-known instance of the parabola in the history of physics is the trajectory of a particle or body in motion under the influence of a uniform gravitational field without air resistance (for instance, a baseball flying through the air, neglecting air friction).

The parabolic trajectory of projectiles was discovered experimentally by Galileo in the early 17th century, who performed experiments with balls rolling on inclined planes. He also later proved this mathematically in his book Dialogue Concerning Two New Sciences.[10][11] For objects extended in space, such as a diver jumping from a diving board, the object itself follows a complex motion as it rotates, but the center of mass of the object nevertheless forms a parabola. As in all cases in the physical world, the trajectory is always an approximation of a parabola. The presence of air resistance, for example, always distorts the shape, although at low speeds, the shape is a good approximation of a parabola. At higher speeds, such as in ballistics, the shape is highly distorted and does not resemble a parabola.

Another hypothetical situation in which parabolae might arise, according to the theories of physics described in the 17th and 18th Centuries by Sir Isaac Newton, is in two-body orbits; for example the path of a small planetoid or other object under the influence of the gravitation of the Sun. Parabolic orbits do not occur in nature; simple orbits most commonly resemble hyperbolas or ellipses. The parabolic orbit is the degenerate intermediate case between those two types of ideal orbit. An object following a parabolic orbit would travel at the exact escape velocity of the object it orbits; objects in elliptical or hyperbolic orbits travel at less or greater than escape velocity, respectively. Long-period comets travel close to the Sun's escape velocity while they are moving through the inner solar system, so their paths are close to being parabolic.

Approximations of parabolae are also found in the shape of the main cables on a simple suspension bridge. The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola, and in calculations the second degree parabola is used.[12][13] Under the influence of a uniform load (such as a horizontal suspended deck), the otherwise catenary-shaped cable is deformed toward a parabola. Unlike an inelastic chain, a freely hanging spring of zero unstressed length takes the shape of a parabola. Suspension-bridge cables are, ideally, purely in tension, without having to carry other, e.g. bending, forces. Similarly, the structures of parabolic arches are purely in compression.

Paraboloids arise in several physical situations as well. The best-known instance is the parabolic reflector, which is a mirror or similar reflective device that concentrates light or other forms of electromagnetic radiation to a common focal point, or conversely, collimates light from a point source at the focus into a parallel beam. The principle of the parabolic reflector may have been discovered in the 3rd century BC by the geometer Archimedes, who, according to a legend of debatable veracity,[14] constructed parabolic mirrors to defend Syracuse against the Roman fleet, by concentrating the sun's rays to set fire to the decks of the Roman ships. The principle was applied to telescopes in the 17th century. Today, paraboloid reflectors can be commonly observed throughout much of the world in microwave and satellite-dish receiving and transmitting antennas.

In parabolic microphones, a parabolic reflector that reflects sound, but not necessarily electromagnetic radiation, is used to focus sound onto a microphone, giving it highly directional performance.

Paraboloids are also observed in the surface of a liquid confined to a container and rotated around the central axis. In this case, the centrifugal force causes the liquid to climb the walls of the container, forming a parabolic surface. This is the principle behind the liquid mirror telescope.

Aircraft used to create a weightless state for purposes of experimentation, such as NASA's "Vomit Comet," follow a vertically parabolic trajectory for brief periods in order to trace the course of an object in free fall, which produces the same effect as zero gravity for most purposes.

In the United States, vertical curves in roads are usually parabolic by design.

### Gallery

Click on any image to enlarge it.

## Generalizations

In algebraic geometry, the parabola is generalized by the rational normal curves, which have coordinates $(x,x^2,x^3,\dots,x^n);$ the standard parabola is the case $n=2,$ and the case $n=3$ is known as the twisted cubic. A further generalization is given by the Veronese variety, when there is more than one input variable.

In the theory of quadratic forms, the parabola is the graph of the quadratic form $x^2$ (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form $x^2+y^2$ (or scalings) and the hyperbolic paraboloid is the graph of the indefinite quadratic form $x^2-y^2.$ Generalizations to more variables yield further such objects.

The curves $y=x^p$ for other values of p are traditionally referred to as the higher parabolas, and were originally treated implicitly, in the form $x^p=ky^q$ for p and q both positive integers, in which form they are seen to be algebraic curves. These correspond to the explicit formula $y=x^{p/q}$ for a positive fractional power of x. Negative fractional powers correspond to the implicit equation $x^py^q=k,$ and are traditionally referred to as higher hyperbolas. Analytically, x can also be raised to an irrational power (for positive values of x); the analytic properties are analogous to when x is raised to rational powers, but the resulting curve is no longer algebraic, and cannot be analyzed via algebraic geometry.

## Notes

1. ^ The only way to draw a straight line on the surface of a circular cone is to make it pass through the apex of the cone, where it will intersect the cone's axis. The line and the axis must therefore be coplanar.
2. ^
3. ^ Wilson, Ray N. (2004). Reflecting Telescope Optics: Basic design theory and its historical development (2 ed.). Springer. p. 3. ISBN 3-540-40106-7., Extract of page 3
4. ^ Stargazer, p. 115.
5. ^ Stargazer, pp. 123 and 132
6. ^ Fitzpatrick, Richard (July 14, 2007), "Spherical Mirrors", Electromagnetism and Optics, lectures, University of Texas at Austin, Paraxial Optics, retrieved October 5, 2011.
7. ^ Lawrence, J. Dennis, A Catalog of Special Plane Curves, Dover Publ., 1972.
8. ^ In the diagram, the axis is not exactly vertical. This is the result of a technical problem that occurs when a 3-dimensional model is converted into a 2-dimensional image. Readers should imagine the cone rotated slightly clockwise, so the axis, AV, is vertical.
9. ^ Downs, J. W., Practical Conic Sections, Dover Publ., 2003.
10. ^ Dialogue Concerning Two New Sciences (1638) (The Motion of Projectiles: Theorem 1); see [1]
11. ^ However, this parabolic shape, as Newton recognized, is only an approximation of the actual elliptical shape of the trajectory, and is obtained by assuming that the gravitational force is constant (not pointing toward the center of the earth) in the area of interest. Often, this difference is negligible, and leads to a simpler formula for tracking motion.
12. ^ a b Troyano, Leonardo Fernández (2003). Bridge engineering: a global perspective. Thomas Telford. p. 536. ISBN 0-7277-3215-3., Chapter 8 page 536
13. ^ Drewry, Charles Stewart (1832). A memoir of suspension bridges. Oxford University. p. 159., Extract of page 159
14. ^ Middleton, W. E. Knowles (December 1961). "Archimedes, Kircher, Buffon, and the Burning-Mirrors". Isis (Published by: The University of Chicago Press on behalf of The History of Science Society) 52 (4): 533–543. doi:10.1086/349498. JSTOR 228646.

## References

• Lockwood, E. H. (1961): A Book of Curves, Cambridge University Press
 184444 videos foundNext >
 184444 videos foundNext >
 7908 news items
 GFirst celebrating its second birthday at the Parabola Arts Centre in Cheltenham This is Gloucestershire Wed, 22 May 2013 03:24:07 -0700 The organisation, which drives the county's business and apprenticeships, is celebrating its second anniversary on June 4 at the Parabola Arts Centre. The event will see the board report on its achievements to date and its plans for growth in ... Co.Design ICFF Preview: The Parabola Chair Is An Instant Classic Co.Design Mon, 13 May 2013 10:57:23 -0700 The LA-based architect and designer, whose “Parabola Chair” just won the 2013 ICFF Studio Award, confesses that he has “always wanted to design a good chair.” By “good,” Aiello tells Co. Design, he means a chair “inspired by mid-century simplicity but ... Parabola Arts Centre gallery hosts exhibition to mark 60th birthday of Sue Ryder This is Gloucestershire Mon, 20 May 2013 08:11:50 -0700 Pictures of Gloucestershire scenes and local musicians are among those due to go on display next week at a Sue Ryder exhibition at the Parabola Arts Centre. A total of 44 artists have donated their work for an exhibition to mark the charity's 60th ... Panorama La parabola di Papa Francesco scuote le coscienze dei vescovi il Giornale Thu, 23 May 2013 22:56:34 -0700 «La mancata vigilanza rende tiepido il pastore; lo fa distratto, dimentico e persino insofferente; lo seduce con la prospettiva della carriera, la lusinga del denaro e i compromessi con lo spirito del mondo; lo impigrisce, trasformandolo in un ... V prosinci skončí ZDFkultur Parabola.cz Fri, 24 May 2013 11:23:07 -0700 Podle nejnovějších informací vyplývá, že německý kulturní kanál ZDFkultur ukončí vysílání na konci roku 2013. První zmínka o možnost uzavření kanálu se objevila již v únoru 2013. Ředitel německé veřejnoprávní televize ZDF Thomas Bellut v pátek ... Bude v Česku labelling audiovizuálního obsahu? Parabola.cz Fri, 24 May 2013 07:18:55 -0700 1. dubna 2013 nabyla účinnosti vyhláška č. 50/2013 Z.z., jíž se novelizuje vyhláška č. 589/2007 Z.z. Ministerstva kultury Slovenské republiky, kterou se ustanovují podrobnosti o jednotném systému označování audiovizuálních děl, zvukových záznamů ... Tribunnews AHLI PASANG PARABOLA & ANTENA TV,02151193728 Tribunnews Thu, 23 May 2013 23:34:17 -0700 HADIRKANLAH SIARAN INFORMASI DUNIA DENGAN PERANGKAT ELEKTRONIK PARABOLA DIGITAL FILM-MUSIC-DRAMA-BERITA-OLAH RAGA DARI DALAM NEGERI & MANCANEGARA LAINNYA. * PAKET PARABOLA DIGITAL * HARGA PAKET ... Česká Digi TV chystá balíček FILMBOX Parabola.cz Fri, 24 May 2013 03:50:12 -0700 Česká nabídka satelitní pay-tv platformy Digi TV se brzy rozšíří o další filmové kanály. Společnost DIGI Česká republika ohlásila zařazení dvou nových filmových kanálů - FilmBox Extra 1 a FilmBox Family. Oba dva programy budou zařazeny do balíčku ...
 Limit to books that you can completely read online Include partial books (book previews) .gsc-branding { display:block; }

Oops, we seem to be having trouble contacting Twitter