digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Ozone-oxygen cycle in the ozone layer.

The ozone layer refers to a region of Earth's stratosphere that absorbs most of the Sun's UV radiation. It contains high concentrations of ozone (O3) relative to other parts of the atmosphere, although it is still very small relative to other gases in the stratosphere. The ozone layer contains less than ten parts per million of ozone, while the average ozone concentration in Earth's atmosphere as a whole is only about 0.3 parts per million. The ozone layer is mainly found in the lower portion of the stratosphere, from approximately 20 to 30 kilometres (12 to 19 mi) above Earth, though the thickness varies seasonally and geographically.[1]

The ozone layer was discovered in 1913 by the French physicists Charles Fabry and Henri Buisson. Its properties were explored in detail by the British meteorologist G. M. B. Dobson, who developed a simple spectrophotometer (the Dobsonmeter) that could be used to measure stratospheric ozone from the ground. Between 1928 and 1958 Dobson established a worldwide network of ozone monitoring stations, which continue to operate to this day. The "Dobson unit", a convenient measure of the amount of ozone overhead, is named in his honor.

The ozone layer absorbs 97–99% of the Sun's medium-frequency ultraviolet light (from about 200 nm to 315 nm wavelength), which otherwise would potentially damage exposed life forms near the surface.[2]

Sources[edit]

The photochemical mechanisms that give rise to the ozone layer were discovered by the British physicist Sydney Chapman in 1930. Ozone in the Earth's stratosphere is created by ultraviolet light striking oxygen molecules containing two oxygen atoms (O2), splitting them into individual oxygen atoms (atomic oxygen); the atomic oxygen then combines with unbroken O2 to create ozone, O3. The ozone molecule is unstable (although, in the stratosphere, long-lived) and when ultraviolet light hits ozone it splits into a molecule of O2 and an atom of atomic oxygen, a continuing process called the ozone-oxygen cycle. Chemically, this can be described as:

O2 + ℎνuv → 2O
O + O2 ↔ O3

About 90% of the ozone in our atmosphere is contained in the stratosphere. Ozone concentrations are greatest between about 20 and 40 kilometres (66,000 and 131,000 ft), where they range from about 2 to 8 parts per million. If all of the ozone were compressed to the pressure of the air at sea level, it would be only 3 millimeters thick.[3]

Ultraviolet light[edit]

UV-B energy levels at several altitudes. Blue line shows DNA sensitivity. Red line shows surface energy level with 10% decrease in ozone
Levels of ozone at various altitudes and blocking of different bands of ultraviolet radiation. Essentially all UVC (100–280 nm) is blocked by dioxygen (from 100–200 nm) or else by ozone (200–280 nm) in the atmosphere. The shorter portion of the UV-C band and the more energetic UV above this band causes the formation of the ozone layer, when single oxygen atoms produced by UV photolysis of dioxygen (below 240 nm) react with more dioxygen. The ozone layer also blocks most, but not quite all, of the sunburn-producing UV-B (280–315 nm) band, which lies in the wavelengths longer than UV-C. The band of UV closest to visible light, UV-A (315–400 nm), is hardly affected by ozone, and most of it reaches the ground. UV-A does not cause skin reddening, but there is evidence that it causes long-term skin damage.

Although the concentration of the ozone in the ozone layer is very small, it is vitally important to life because it absorbs biologically harmful ultraviolet (UV) radiation coming from the sun. Extremely short or vacuum UV (10–100 nm) is screened out by nitrogen. UV radiation capable of penetrating nitrogen is divided into three categories, based on its wavelength; these are referred to as UV-A (400–315 nm), UV-B (315–280 nm), and UV-C (280–100 nm).

UV-C, which is very harmful to all living things, is entirely screened out by a combination of dioxygen (< 200 nm) and ozone (> about 200 nm) by around 35 kilometres (115,000 ft) altitude. UV-B radiation can be harmful to the skin and is the main cause of sunburn; excessive exposure can also cause cataracts, immune system depression, and genetic damage, resulting in problems such as skin cancer. The ozone layer (which absorbs from about 200 nm to 310 nm with a maximal absorption at about 250 nm) [4] is very effective at screening out UV-B; for radiation with a wavelength of 290 nm, the intensity at the top of the atmosphere is 350 million times stronger than at the Earth's surface. Nevertheless, some UV-B, particularly at its longest wavelengths, reaches the surface.

Ozone is transparent to most UV-A, so most of this longer wavelength UV radiation reaches the surface, and it constitutes most of the UV reaching the Earth. This type of UV radiation is significantly less harmful to DNA, although it may still potentially cause physical damage, premature aging of the skin, indirect genetic damage, and skin cancer [5] (see ultraviolet for more about UV-A).

Distribution in the stratosphere[edit]

The thickness of the ozone layer—that is, the total amount of ozone in a column overhead—varies by a large factor worldwide, being in general smaller near the equator and larger towards the poles. It also varies with season, being in general thicker during the spring and thinner during the autumn. The reasons for this latitude and seasonal dependence are complicated, involving atmospheric circulation patterns as well as solar intensity.

Since stratospheric ozone is produced by solar UV radiation, one might expect to find the highest ozone levels over the tropics and the lowest over polar regions. The same argument would lead one to expect the highest ozone levels in the summer and the lowest in the winter. The observed behavior is very different: most of the ozone is found in the mid-to-high latitudes of the northern and southern hemispheres, and the highest levels are found in the spring, not summer, and the lowest in the autumn, not winter in the northern hemisphere. During winter, the ozone layer actually increases in depth. This puzzle is explained by the prevailing stratospheric wind patterns, known as the Brewer-Dobson circulation. While most of the ozone is indeed created over the tropics, the stratospheric circulation then transports it poleward and downward to the lower stratosphere of the high latitudes. However, owing to the ozone hole phenomenon, the lowest amounts of column ozone found anywhere in the world are over the Antarctic in the southern spring period of September and October and to a lesser extent over the Arctic in the northern spring period of March, April, and May.

Brewer-Dobson circulation in the ozone layer.

The ozone layer is higher in altitude in the tropics, and lower in altitude outside the tropics, especially in the polar regions. This altitude variation of ozone results from the slow circulation that lifts the ozone-poor air out of the troposphere into the stratosphere. As this air slowly rises in the tropics, ozone is produced as the sun overhead photolyzes oxygen molecules. As this slow circulation levels off and flows towards the mid-latitudes, it carries the ozone-rich air from the tropical middle stratosphere to the mid-and-high latitudes lower stratosphere. The high ozone concentrations at high latitudes are due to the accumulation of ozone at lower altitudes.

The Brewer-Dobson circulation moves very slowly. The time needed to lift an air parcel by 1 km in the lower tropical stratosphere is about 2 months (18 m per day). However, horizontal poleward transport in the lower stratosphere is much faster and amounts to approximately 100 km per day in the northern hemisphere whilst it is only half as much in the southern hemisphere (~51 km per day).[6] Even though ozone in the lower tropical stratosphere is produced at a very slow rate, the lifting circulation is so slow that ozone can build up to relatively high levels by the time it reaches 26 kilometres (16 mi).

Ozone amounts over the continental United States (25°N to 49°N) are highest in the northern spring (April and May). These ozone amounts fall over the course of the summer to their lowest amounts in October, and then rise again over the course of the winter.[7] Again, wind transport of ozone is principally responsible for the seasonal changes of these higher latitude ozone patterns.

The total column amount of ozone generally increases as we move from the tropics to higher latitudes in both hemispheres. However, the overall column amounts are greater in the northern hemisphere high latitudes than in the southern hemisphere high latitudes. In addition, while the highest amounts of column ozone over the Arctic occur in the northern spring (March–April), the opposite is true over the Antarctic, where the lowest amounts of column ozone occur in the southern spring (September–October).

Depletion[edit]

Main article: Ozone depletion
NASA projections of stratospheric ozone concentrations if chlorofluorocarbons had not been banned.

The ozone layer can be depleted by free radical catalysts, including nitric oxide (NO), nitrous oxide (N2O), hydroxyl (OH), atomic chlorine (Cl), and atomic bromine (Br). While there are natural sources for all of these species, the concentrations of chlorine and bromine have increased markedly in recent years due to the release of large quantities of man-made organohalogen compounds, especially chlorofluorocarbons (CFCs) and bromofluorocarbons.[8] These highly stable compounds are capable of surviving the rise to the stratosphere, where Cl and Br radicals are liberated by the action of ultraviolet light. Each radical is then free to initiate and catalyze a chain reaction capable of breaking down over 100,000 ozone molecules. The breakdown of ozone in the stratosphere results in a reduction of the absorption of ultraviolet radiation. Consequently, unabsorbed and dangerous ultraviolet radiation is able to reach the Earth’s surface. Ozone levels over the northern hemisphere have been dropping by 4% per decade. Over approximately 5% of the Earth's surface, around the north and south poles, much larger seasonal declines have been seen, and are described as ozone holes.

In 2009, nitrous oxide (N2O) was the largest ozone-depleting substance (ODS) emitted through human activities.[9]

Regulation[edit]

In 1978, the United States, Canada and Norway enacted bans on CFC-containing aerosol sprays that damage the ozone layer. The European Community rejected an analogous proposal to do the same. In the U.S., chlorofluorocarbons continued to be used in other applications, such as refrigeration and industrial cleaning, until after the discovery of the Antarctic ozone hole in 1985. After negotiation of an international treaty (the Montreal Protocol), CFC production was sharply limited beginning in 1987 and phased out completely by 1996.[citation needed] Since that time, the treaty has been amended to ban CFC production after 1995 in the developed countries, and later in developing countries. Today, all of the world's 197 countries have signed the treaty. Beginning January 1, 1996, only recycled and stockpiled CFCs were available for use in developed countries like the US. This production phaseout was possible because of efforts to ensure that there would be substitute chemicals and technologies for all ODS uses.[10]

On August 2, 2003, scientists announced that the global depletion of the ozone layer may be slowing down due to the international regulation of ozone-depleting substances.[7] In a study organized by the American Geophysical Union, three satellites and three ground stations confirmed that the upper-atmosphere ozone-depletion rate has slowed down significantly during the past decade. Some breakdown can be expected to continue due to ODSs used by nations which have not banned them, and due to gases which are already in the stratosphere. Some ODSs, including CFCs, have very long atmospheric lifetimes, ranging from 50 to over 100 years. It has been estimated that the ozone layer will recover to 1980 levels near the middle of the 21st Century.[7]

Compounds containing C–H bonds (such as hydrochlorofluorocarbons, or HCFCs) have been designed to replace CFCs in certain applications. These replacement compounds are more reactive and less likely to survive long enough in the atmosphere to reach the stratosphere where they could affect the ozone layer. While being less damaging than CFCs, HCFCs can have a negative impact on the ozone layer, so they are also being phased out.[11] These in turn are being replaced by hydrofluorocarbons (HFCs) and other compounds that do not destroy stratospheric ozone at all.

See also[edit]

References[edit]

  1. ^ "Science: Ozone Basics". Retrieved 2007-01-29. 
  2. ^ "Ozone layer". Retrieved 2007-09-23. 
  3. ^ "NASA Facts Archive". Retrieved 2011-06-09. 
  4. ^ [1] See the graphical absorption of ozone in two bands, as a function of wavelength
  5. ^ Review: Ultraviolet radiation and skin cancer Deevya L. Narayanan MPH, CPH1, Rao N. Saladi MD1, Joshua L. Fox MD, FAAD2 International Journal of Dermatology Volume 49, Issue 9, pp. 978–986, September 2010
  6. ^ Flury, T., Wu, D. L., and Read, W. G.: Variability in the speed of the Brewer–Dobson circulation as observed by Aura/MLS, Atmos. Chem. Phys., 13, 4563-4575, doi:10.5194/acp-13-4563-2013, 2013.
  7. ^ a b c World Meteorological Association. Scientific Assessment of Ozone Depletion: 2010, Geneva: WMO, 2011. sections 2.1-2.2|http://acdb-ext.gsfc.nasa.gov/Documents/O3_Assessments/#WMO2010
  8. ^ Energy Information Administration/Emissions of Greenhouse Gases in the United States 1996 (2008-06-24). "Halocarbons and Other Gases". Retrieved 2008-06-24. 
  9. ^ "NOAA Study Shows Nitrous Oxide Now Top Ozone-Depleting Emission, NOAA, August 27, 2009". Noaanews.noaa.gov. 2009-08-27. Retrieved 2011-11-08. 
  10. ^ "Brief Questions and Answers on Ozone Depletion | Ozone Layer Protection | US EPA". Epa.gov. 2006-06-28. Retrieved 2011-11-08. 
  11. ^ US EPA (2008-09-03). "Ozone Depletion Glossary". Retrieved 2008-09-03. 

Further reading[edit]

Science
  • Mario Molina, and F. Sherwood Rowland. "Stratospheric Sink for Chlorofluoromethanes: Chlorine Atomic Catalyzed Destruction of Ozone". Nature 249(28 June 1974): 810–12.
  • Sei, John H.; Pandis, Spyros N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley and Sons, Inc. ISBN 0-471-17816-0, 1998.
  • World Meteorological Organization. Scientific Assessment of Stratospheric Ozone: 2010 Geneva: WMO, 2011.
  • World Meteorological Organization. Scientific Assessment of Ozone Depletion: 2006. Geneva: WMO, 2007.
  • World Meteorological Organization. Scientific Assessment of Stratospheric Ozone: 1991. Geneva: WMO, 1991.
  • UNEP (United Nations Environment Programme). Environmental Effects of Ozone Depletion and its Interactions with Climate Change: 2010 Assessment. Nairobi: UNEP, 2010.
  • Velders, Guus J.M., Stephen O. Andersen, John S. Daniel, David W. Fahey, and Mack McFarland. 2007. “The Importance of the Montreal Protocol in Protecting Climate.” Proceedings of the National Academy of Sciences of the United States of America, 104(12):4814–4819.
Policy

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Ozone_layer — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
365187 videos foundNext > 

Ozone Layer Danger

Think of the ozone layer as Earth's sunglasses, protecting life on the surface from the harmful glare of the sun's strongest ultraviolet rays, which can caus...

Ozzy Ozone

In this animated short film, Ozzy Ozone (an ozone molecule) and Alberta the Albatross take a voyage of discovery to find out exactly who and what is attackin...

The Arctic and the Ozone Layer (HD Version)

The Arctic region, around the North Pole, is an important indicator of the impacts of industrial and human activities, both at the surface level and in the a...

What is Ozone Layer? | Mocomi Kids

http://mocomi.com/ presents: What is Ozone layer? The Ozone layer protects the Earth and its inhabitants from harmful UV rays of the sun. Watch this animated...

Ozone Layer Depletion HD

This is a video I made on my own for my science class! All rights obtained. Enjoy this wonderful presentation on the effects of ozone layer depletion by JD D...

Global Warming , Green House Effect , Ozone Layer Video for Kids

Visit http://www.makemegenius.com for free science videos for kids. Global warming can be defined as heating of earth because of increase in green house gase...

The Antarctic Ozone Hole -- From Discovery to Recovery, a Scientific Journey

While the ozone hole has been considered by some as a solved problem, in fact its recovery is still many decades away and the effects and interactions of ozo...

Ozone Layer & Hole - Video for Kids

Visit http://www.makemegenius.com for more,free science videos for kids. Along-with beneficial rays from sun, there many harmful rays also which come from th...

See the Hole in the Ozone Layer (1979 - 2012)

Back in the 1980's we were warned that the CFC's (gas) used in our air conditioning and spray cans was eating a hole in the Ozone layer. If not stopped, the ...

ozone hole

365187 videos foundNext > 

1056 news items

Headlines & Global News

The Week Magazine
Thu, 21 Aug 2014 09:33:55 -0700

New research by NASA found that a compound from an unknown source is destroying the ozone layer. The compound — carbon tetrachloride — has been banned globally, and NASA doesn't know where it's coming from. Carbon tetrachloride used to be ...
 
Mobile Magazine
Thu, 21 Aug 2014 04:26:15 -0700

Decades ago, via the Montreal Protocol, we banned the use of chlorofluorocarbons to protect Earth's Ozone layer. But after so many years, new research is suggesting that the layer is still under threat. New NASA research is suggesting that the Earth's ...

The Nation

The Nation
Sun, 27 Jul 2014 19:03:45 -0700

ISLAMABAD - Pakistan has successfully completed four out of five projects of Stage-I of HCFC Phase-out Management Plan (HPMP), which will keep the country in compliance with the current targets of Montreal Protocol that relates to the Ozone layer.

Michigan State University Extension

Michigan State University Extension
Thu, 31 Jul 2014 21:41:15 -0700

Ozone in this layer is produced naturally. This ozone layer protects the Earth from the sun's damaging ultraviolet (UV) radiation. This UV radiation can lead to increases in skin cancer, cataracts and immune system impairment. This protective shield ...
 
Salon
Thu, 21 Aug 2014 06:40:45 -0700

... once commonly used in fire extinguishers, dry cleaning and as a pesticide, was banned — worldwide — in 1987, after scientists realized that it, along with chlorofluorocarbons (CFCs), was responsible for the general depletion of the ozone layer ...

Responding to Climate Change

Responding to Climate Change
Thu, 21 Aug 2014 03:58:55 -0700

Efforts to protect the ozone layer are often cited as an environmental and diplomatic success story. Former UN secretary general Kofi Annan described the Montreal Protocol, which banned several harmful chemicals, as “perhaps the single most successful ...

Raw Story

Raw Story
Wed, 20 Aug 2014 14:11:15 -0700

The world agreed to stop using CC14 as part of the Vienna Convention on Protection of the Ozone Layer and its Montreal Protocol, which attained universal ratification in 2009. “Parties to the Montreal Protocol reported zero new CCl4 emissions between ...

ABC Online

ABC Online
Wed, 20 Aug 2014 22:26:15 -0700

A chemical known to damage the Earth's ozone layer is being released from an unknown source, according to NASA. A CHEMICAL USED IN dry cleaning and fire extinguishers may have been phased out in recent years but NASA said on Wednesday that ...
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Ozone layer

You can talk about Ozone layer with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!