Network science 



Network types 
Graphs 
Features
Types

Models 
Lists 
Categories 
Network theory is an area of computer science and network science and part of graph theory. It has application in many disciplines including statistical physics, particle physics, computer science, electrical engineering, biology, economics, operations research, and sociology. Network theory concerns itself with the study of graphs as a representation of either symmetric relations or, more generally, of asymmetric relations between discrete objects. Applications of network theory include logistical networks, the World Wide Web, Internet, gene regulatory networks, metabolic networks, social networks, epistemological networks, etc. See list of network theory topics for more examples.
Euler's solution of the Seven Bridges of Königsberg problem is considered to be the first true proof in the theory of networks.^{[1]}
Contents
Network optimization[edit]
Network problems that involve finding an optimal way of doing something are studied under the name combinatorial optimization. Examples include network flow, shortest path problem, transport problem, transshipment problem, location problem, matching problem, assignment problem, packing problem, routing problem, Critical Path Analysis and PERT (Program Evaluation & Review Technique).
Network analysis[edit]
Social network analysis[edit]
Social network analysis examines the structure of relationships between social entities.^{[2]} These entities are often persons, but may also be groups, organizations, nation states, web sites, scholarly publications.
Since the 1970s, the empirical study of networks has played a central role in social science, and many of the mathematical and statistical tools used for studying networks have been first developed in sociology.^{[3]} Amongst many other applications, social network analysis has been used to understand the diffusion of innovations, news and rumors. Similarly, it has been used to examine the spread of both diseases and healthrelated behaviors. It has also been applied to the study of markets, where it has been used to examine the role of trust in exchange relationships and of social mechanisms in setting prices. Similarly, it has been used to study recruitment into political movements and social organizations. It has also been used to conceptualize scientific disagreements as well as academic prestige. More recently, network analysis (and its close cousin traffic analysis) has gained a significant use in military intelligence, for uncovering insurgent networks of both hierarchical and leaderless nature.
Biological network analysis[edit]
With the recent explosion of publicly available high throughput biological data, the analysis of molecular networks has gained significant interest. The type of analysis in this context is closely related to social network analysis, but often focusing on local patterns in the network. For example network motifs are small subgraphs that are overrepresented in the network. Similarly, activity motifs are patterns in the attributes of nodes and edges in the network that are overrepresented given the network structure.
Link analysis[edit]
Link analysis is a subset of network analysis, exploring associations between objects. An example may be examining the addresses of suspects and victims, the telephone numbers they have dialed and financial transactions that they have partaken in during a given timeframe, and the familial relationships between these subjects as a part of police investigation. Link analysis here provides the crucial relationships and associations between very many objects of different types that are not apparent from isolated pieces of information. Computerassisted or fully automatic computerbased link analysis is increasingly employed by banks and insurance agencies in fraud detection, by telecommunication operators in telecommunication network analysis, by medical sector in epidemiology and pharmacology, in law enforcement investigations, by search engines for relevance rating (and conversely by the spammers for spamdexing and by business owners for search engine optimization), and everywhere else where relationships between many objects have to be analyzed.
Network robustness[edit]
The structural robustness of networks ^{[4]} is studied using percolation theory. When a critical fraction of nodes (or links) is removed the network becomes fragmented into small disconnected clusters. This phenomenon is called percolation ^{[5]} and it represents an orderdisorder type of phase transition with critical exponents.
Web link analysis[edit]
Several Web search ranking algorithms use linkbased centrality metrics, including Google's PageRank, Kleinberg's HITS algorithm, the CheiRank and TrustRank algorithms. Link analysis is also conducted in information science and communication science in order to understand and extract information from the structure of collections of web pages. For example the analysis might be of the interlinking between politicians' web sites or blogs. Another use is for classifying pages according to their mention in other pages.^{[6]}
Centrality measures[edit]
Information about the relative importance of nodes and edges in a graph can be obtained through centrality measures, widely used in disciplines like sociology. For example, eigenvector centrality uses the eigenvectors of the adjacency matrix corresponding to a network, to determine nodes that tend to be frequently visited. Formally established measures of centrality are degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, subgraph centrality and Katz centrality. The purpose or objective of analysis generally determines the type of centrality measure to be used. For example, if one is interested in dynamics on networks or the robustness of a network to node/link removal, often the dynamical importance ^{[7]} of a node is the most relevant centrality measure.
Assortative and Disassortative mixing[edit]
These concepts were made because of the nature of hubs in a network. Hubs are nodes which have lots of links. If we see one link in the hub, there is no difference between the hubs, however, some differences are exited between those nodes; some hubs tend to link to the other nodes and other hubs avoid connecting to the other nodes. We say a hub is assortative when it tends to connect to the other hubs. A dissortative hub avoids connecting to other hubs. If some nodes have some connections with the expected random probabilities, the hubs are neutral. There are three methods to quantify degree correlations.
Spreading processes[edit]
Content in a complex network can spread via two major methods: conserved spread and nonconserved spread.^{[8]} In conserved spread, the total amount of content that enters a complex network remains constant as it passes through. The model of conserved spread can best be represented by a pitcher containing a fixed amount of water being poured into a series of funnels connected by tubes . Here, the pitcher represents the original source and the water is the content being spread. The funnels and connecting tubing represent the nodes and the connections between nodes, respectively. As the water passes from one funnel into another, the water disappears instantly from the funnel that was previously exposed to the water. In nonconserved spread, the amount of content changes as it enters and passes through a complex network. The model of nonconserved spread can best be represented by a continuously running faucet running through a series of funnels connected by tubes. Here, the amount of water from the original source is infinite. Also, any funnels that have been exposed to the water continue to experience the water even as it passes into successive funnels. The nonconserved model is the most suitable for explaining the transmission of most infectious diseases, neural excitation, information and rumors, etc.
Interdependent networks[edit]
Interdependent networks is a system of coupled networks where nodes of one or more networks depend on nodes in other networks. Such dependencies are enhanced by the developments in modern technology. Dependencies may lead to cascading failures between the networks and a relatively small failure can lead to a catastrophic breakdown of the system. Blackouts are a fascinating demonstration of the important role played by the dependencies between networks. A recent study developed a framework to study the cascading failures in an interdependent networks system.^{[9]}^{[10]}
Implementations[edit]
 igraph, an open source C library for the analysis of largescale complex networks, with interfaces to R, Python and Ruby.
 Graphtool and NetworkX, free and efficient Python modules for manipulation and statistical analysis of networks. [2] [3]
 Orange, a free data mining software suite, module orngNetwork
 Pajek, program for (large) network analysis and visualization.
 Tulip, a free data mining and visualization software dedicated to the analysis and visualization of relational data. [4]
 SEMOSS, an RDFbased open source contextaware analytics tool written in Java leveraging the SPARQL query language.
See also[edit]
 Complex network
 Constructal law^{[11]}
 Percolation
 Network science
 Network Theory in Risk Assessment
 Network topology
 Network analyzer
 Seven Bridges of Königsberg
 Smallworld networks
 Social circles
 Scalefree networks
 Network dynamics
 Sequential dynamical systems
 Pathfinder networks
References[edit]
 ^ Newman, M. E. J. The structure and function of complex networks. Department of Physics, University of Michigan.
 ^ Wasserman, Stanley and Katherine Faust. 1994. Social Network Analysis: Methods and Applications. Cambridge: Cambridge University Press.
 ^ Newman, M.E.J. Networks: An Introduction. Oxford University Press. 2010
 ^ R. Cohen, S. Havlin (2010). Complex Networks: Structure, Robustness and Function. Cambridge University Press.
 ^ A. Bunde, S. Havlin (1996). Fractals and Disordered Systems. Springer.
 ^ Attardi, G.; S. Di Marco; D. Salvi (1998). "Categorization by Context". Journal of Universal Computer Science 4 (9): 719–736.
 ^ Restrepo, Juan, E. Ott, B. R. Hunt (2006). "Characterizing the Dynamical Importance of Network Nodes and Links". Phys. Rev. Lett 97 (9): 094102. doi:10.1103/PhysRevLett.97.094102. PMID 17026366.
 ^ Newman, M., Barabási, A.L., Watts, D.J. [eds.] (2006) The Structure and Dynamics of Networks. Princeton, N.J.: Princeton University Press.
 ^ S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, S. Havlin (2010). "Catastrophic cascade of failures in interdependent networks". Nature 464 (7291): 1025–28. doi:10.1038/nature08932.
 ^ Jianxi Gao, Sergey V. Buldyrev3, Shlomo Havlin4, and H. Eugene Stanley (2011). "Robustness of a Network of Networks". Phys. Rev. Lett 107 (19): 195701. doi:10.1103/PhysRevLett.107.195701. PMID 22181627.
 ^ [1] Bejan A., Lorente S., The Constructal Law of Design and Evolution in Nature. Philosophical Transactions of the Royal Society B, Biological Science, Vol. 365, 2010, pp. 13351347.
External links[edit]
 netwiki Scientific wiki dedicated to network theory
 New Network Theory International Conference on 'New Network Theory'
 Network Workbench: A LargeScale Network Analysis, Modeling and Visualization Toolkit
 Network analysis of computer networks
 Network analysis of organizational networks
 Network analysis of terrorist networks
 Network analysis of a disease outbreak
 Link Analysis: An Information Science Approach (book)
 Connected: The Power of Six Degrees (documentary)
 Influential Spreaders in Networks, M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley, H.A. Makse, Nature Physics 6, 888 (2010)
 A short course on complex networks
 A course on complex network analysis by AlbertLászló Barabási
Books[edit]
 S.N. Dorogovtsev and J.F.F. Mendes, Evolution of Networks: from biological networks to the Internet and WWW, Oxford University Press, 2003, ISBN 0198515901
 G. Caldarelli, "ScaleFree Networks", Oxford University Press, 2007, ISBN 9780199211517
 A. Barrat, M. Barthelemy, A. Vespignani , "Dynamical Processes on Complex Networks", Cambridge University Press, 2008, ISBN 9780521879507
 E. Estrada, "The Structure of Complex Networks: Theory and Applications", Oxford University Press, 2011, ISBN 9780199591756
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.