digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

In mathematics, the mean curvature $H$ of a surface $S$ is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.

The concept was introduced by Sophie Germain in her work on elasticity theory.[1][2] It is important in the analysis of minimal surfaces, which have mean curvature zero, and in the analysis of physical interfaces between fluids (such as soap films) which by the Young–Laplace equation have constant mean curvature.

## Definition

Let $p$ be a point on the surface $S$. Each plane through $p$ containing the normal line to $S$ cuts $S$ in a (plane) curve. Fixing a choice of unit normal gives a signed curvature to that curve. As the plane is rotated (always containing the normal line) that curvature can vary, and the maximal curvature $\kappa_1$ and minimal curvature $\kappa_2$ are known as the principal curvatures of $S$.

The mean curvature at $p\in S$ is then the average of the principal curvatures (Spivak 1999, Volume 3, Chapter 2), hence the name:

$H = {1 \over 2} (\kappa_1 + \kappa_2).$

More generally (Spivak 1999, Volume 4, Chapter 7), for a hypersurface $T$ the mean curvature is given as

$H=\frac{1}{n}\sum_{i=1}^{n} \kappa_{i}.$

More abstractly, the mean curvature is the trace of the second fundamental form divided by n (or equivalently, the shape operator).

Additionally, the mean curvature $H$ may be written in terms of the covariant derivative $\nabla$ as

$H\vec{n} = g^{ij}\nabla_i\nabla_j X,$

using the Gauss-Weingarten relations, where $X(x)$ is a smoothly embedded hypersurface, $\vec{n}$ a unit normal vector, and $g_{ij}$ the metric tensor.

A surface is a minimal surface if and only if the mean curvature is zero. Furthermore, a surface which evolves under the mean curvature of the surface $S$, is said to obey a heat-type equation called the mean curvature flow equation.

The sphere is the only embedded surface of constant positive mean curvature without boundary or singularities. However, the result is not true when the condition "embedded surface" is weakened to "immersed surface".[3]

### Surfaces in 3D space

For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface:

$2 H = -\nabla \cdot \hat n$

where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "towards" the normal. The formula above holds for surfaces in 3D space defined in any manner, as long as the divergence of the unit normal may be calculated. Mean Curvature may also be calculated

$H = \text{Trace}( (II)(I^{-1}))$

where I and II denote first and second quadratic form matrices, respectively.

For the special case of a surface defined as a function of two coordinates, e.g. $z = S(x, y)$, and using the upward pointing normal the (doubled) mean curvature expression is

\begin{align}2 H & = -\nabla \cdot \left(\frac{\nabla(z-S)}{|\nabla(z - S)|}\right) \\ & = \nabla \cdot \left(\frac{\nabla S} {\sqrt{1 + |\nabla S|^2}}\right) \\ & = \frac{ \left(1 + \left(\frac{\partial S}{\partial x}\right)^2\right) \frac{\partial^2 S}{\partial y^2} - 2 \frac{\partial S}{\partial x} \frac{\partial S}{\partial y} \frac{\partial^2 S}{\partial x \partial y} + \left(1 + \left(\frac{\partial S}{\partial y}\right)^2\right) \frac{\partial^2 S}{\partial x^2} }{\left(1 + \left(\frac{\partial S}{\partial x}\right)^2 + \left(\frac{\partial S}{\partial y}\right)^2\right)^{3/2}}. \end{align}

In particular at a point where $\nabla S=0$, the mean curvature is half the trace of the Hessian matrix of $S$.

If the surface is additionally known to be axisymmetric with $z = S(r)$,

$2 H = \frac{\frac{\partial^2 S}{\partial r^2}}{\left(1 + \left(\frac{\partial S}{\partial r}\right)^2\right)^{3/2}} + {\frac{\partial S}{\partial r}}\frac{1}{r \left(1 + \left(\frac{\partial S}{\partial r}\right)^2\right)^{1/2}},$

where ${\frac{\partial S}{\partial r}}\frac{1}{r}$ comes from the derivative of $z = S(r)=S\left(\scriptstyle \sqrt{x^2+y^2} \right)$.

## Mean curvature in fluid mechanics

An alternate definition is occasionally used in fluid mechanics to avoid factors of two:

$H_f = (\kappa_1 + \kappa_2) \,$.

This results in the pressure according to the Young-Laplace equation inside an equilibrium spherical droplet being surface tension times $H_f$; the two curvatures are equal to the reciprocal of the droplet's radius

$\kappa_1 = \kappa_2 = r^{-1} \,$.

## Minimal surfaces

A rendering of Costa's minimal surface.
Main article: Minimal surface

A minimal surface is a surface which has zero mean curvature at all points. Classic examples include the catenoid, helicoid and Enneper surface. Recent discoveries include Costa's minimal surface and the Gyroid.

An extension of the idea of a minimal surface are surfaces of constant mean curvature. The surfaces of unit constant mean curvature in hyperbolic space are called Bryant surfaces.[4]

## Notes

1. ^ Dubreil-Jacotin on Sophie Germain
2. ^ Lodder, J. (2003). "Curvature in the Calculus Curriculum". The American Mathematical Monthly 110 (7): 593–605. doi:10.2307/3647744. JSTOR 3647744. edit
3. ^ http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.pjm/1102702809
4. ^ Rosenberg, Harold (2002), "Bryant surfaces", The global theory of minimal surfaces in flat spaces (Martina Franca, 1999), Lecture Notes in Math. 1775, Berlin: Springer, pp. 67–111, doi:10.1007/978-3-540-45609-4_3, MR 1901614.

## References

• Spivak, Michael (1999), A comprehensive introduction to differential geometry (Volumes 3-4) (3rd ed.), Publish or Perish Press, ISBN 0-914098-72-1, (Volume 3), (Volume 4).

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Mean_curvature — Please support Wikipedia.
 7254 videos foundNext >
 Mean curvature flow, lecture 1Colloquium.Analytic and geometric properties of mean curvature flowThe lecture gives an introduction to hypersurfaces moving in normal direction in an ambien... Mean Curvature Flow of the Batman Symbol Mean curvature flow, lecture 4Application of mean curvature flow to General Relativity" We study 2-dimensional spheres moving in asymptotically flat 3-manifolds of non-negative scalar cur... Mean curvature flow, lecture 2Singularities of mean curvature flow. The formation of singularities in mean curvature flow is investigated with rescaling techniques, monotonicity formulae ... Volume preserving mean curvature flowVolume preserving mean curvature flow; Conservative Allen--Cahn equation; two circles;Geometric evolution; Dongsun Lee; mathematics; Korea University. Mean Curvature Flow of Random Initial Data Mean curvature flow, lecture 3Surgery for mean curvature flow of 2-convex surfaces.The lecture describes joint work with Carlo Sinestrari on mean curvature flow with surgery for hypersurf... Robert Haslhofer: Mean Curvature Flow with SurgeryThis is Robert Bryant's talk at the 29th Annual Geometry Festival, held from April 11-13, 2014. The abstract for this talk is: "We give a new proof for the e... Mean curvature flow of Stanford dragonThis movie presents a mean curvature flow of the Stanford dragon. Movie produced by FlowER - http://copyme.github.io/flower/ - educational and simple softwar... Stochastic Mean Curvature Flow of Random Initial Data
 7254 videos foundNext >
 1 news items
 ICMC-USP abre concurso para professor titular PlanetaUniversitário Thu, 21 Aug 2014 20:11:15 -0700 Outras três teses receberam menção honrosa: “Minimal and constant mean curvature surfaces in homogeneous 3-manifolds”, de Ana Maria Menezes de Jesus, defendida no Instituto Nacional de Matemática Pura e Aplicada (Impa) com orientação de Harold ...
 Limit to books that you can completely read online Include partial books (book previews) .gsc-branding { display:block; }

Oops, we seem to be having trouble contacting Twitter