digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

An example of lateral earth pressure overturning a retaining wall

Lateral earth pressure is the pressure that soil exerts in the horizontal direction. The lateral earth pressure is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and braced excavations.

The coefficient of lateral earth pressure, K, is defined as the ratio of the horizontal effective stress, σ’h, to the vertical effective stress, σ’v. The effective stress is the intergranular stress calculated by subtracting the pore pressure from the total stress as described in soil mechanics. K for a particular soil deposit is a function of the soil properties and the stress history. The minimum stable value of K is called the active earth pressure coefficient, Ka; the active earth pressure is obtained, for example,when a retaining wall moves away from the soil. The maximum stable value of K is called the passive earth pressure coefficient, Kp; the passive earth pressure would develop, for example against a vertical plow that is pushing soil horizontally. For a level ground deposit with zero lateral strain in the soil, the "at-rest" coefficient of lateral earth pressure, K0 is obtained.

There are many theories for predicting lateral earth pressure; some are empirically based, and some are analytically derived.

## At rest pressure

At rest lateral earth pressure, represented as K0, is the in situ lateral pressure. It can be measured directly by a dilatometer test (DMT) or a borehole pressuremeter test (PMT). As these are rather expensive tests, empirical relations have been created in order to predict at rest pressure with less involved soil testing, and relate to the angle of shearing resistance. Two of the more commonly used are presented below.

Jaky (1948)[1] for normally consolidated soils:

$K_{0(NC)} = 1 - \sin \phi ' \$

Mayne & Kulhawy (1982)[2] for overconsolidated soils:

$K_{0(OC)} = K_{0(NC)} * OCR^{(\sin \phi ')} \$

The latter requires the OCR profile with depth to be determined. OCR is the overconsolidation ratio and $\phi '$ is the effective stress friction angle.

To estimate K0 due to compaction pressures, refer Ingold (1979)[3]

## Soil Lateral Active Pressure and Passive Resistance

Different types of wall structures can be designed to resist earth pressure.

The active state occurs when a retained soil mass is allowed to relax or deform laterally and outward (away from the soil mass) to the point of mobilizing its available full shear resistance (or engaged its shear strength) in trying to resist lateral deformation. That is, the soil is at the point of incipient failure by shearing due to unloading in the lateral direction. It is the minimum theoretical lateral pressure that a given soil mass will exert on a retaining that will move or rotate away from the soil until the soil active state is reached (not necessarily the actual in-service lateral pressure on walls that do not move when subjected to soil lateral pressures higher than the active pressure). The passive state occurs when a soil mass is externally forced laterally and inward (towards the soil mass) to the point of mobilizing its available full shear resistance in trying to resist further lateral deformation. That is, the soil mass is at the point of incipient failure by shearing due to loading in the lateral direction. It is the maximum lateral resistance that a given soil mass can offer to a retaining wall that is being pushed towards the soil mass. That is, the soil is at the point of incipient failure by shearing, but this time due to loading in the lateral direction. Thus active pressure and passive resistance define the minimum lateral pressure and the maximum lateral resistance possible from a give mass of soil.

### Rankine theory

Rankine's theory, developed in 1857,[4] is a stress field solution that predicts active and passive earth pressure. It assumes that the soil is cohesionless, the wall is frictionless, the soil-wall interface is vertical, the failure surface on which the soil moves is planar, and the resultant force is angled parallel to the backfill surface. The equations for active and passive lateral earth pressure coefficients are given below. Note that φ' is the angle of shearing resistance of the soil and the backfill is inclined at angle β to the horizontal

$K_a = \cos\beta \frac{\cos \beta - \left(\cos ^2 \beta - \cos ^2 \phi \right)^{1/2}}{\cos \beta + \left(\cos ^2 \beta - \cos ^2 \phi \right)^{1/2}}$
$K_p = \cos\beta \frac{\cos \beta + \left(\cos ^2 \beta - \cos ^2 \phi \right)^{1/2}}{\cos \beta - \left(\cos ^2 \beta - \cos ^2 \phi \right)^{1/2}}$

For the case where β is 0, the above equations simplify to

$K_a = \tan ^2 \left( 45 - \frac{\phi}{2} \right) = \frac{ 1 - \sin(\phi) }{ 1 + \sin(\phi) }$
$K_p = \tan ^2 \left( 45 + \frac{\phi}{2} \right) = \frac{ 1 + \sin(\phi) }{ 1 - \sin(\phi) }$

### Coulomb theory

Coulomb (1776)[5] first studied the problem of lateral earth pressures on retaining structures. He used limit equilibrium theory, which considers the failing soil block as a free body in order to determine the limiting horizontal earth pressure. The limiting horizontal pressures at failure in extension or compression are used to determine the Ka and Kp respectively. Since the problem is indeterminate,[6] a number of potential failure surfaces must be analysed to identify the critical failure surface (i.e. the surface that produces the maximum or minimum thrust on the wall). Mayniel (1908)[7] later extended Coulomb's equations to account for wall friction, symbolized by δ. Müller-Breslau (1906)[8] further generalized Mayniel's equations for a non-horizontal backfill and a non-vertical soil-wall interface (represented by angle θ from the vertical).

$K_a = \frac{ \cos ^2 \left( \phi - \theta \right)}{\cos ^2 \theta \cos \left( \delta + \theta \right) \left( 1 + \sqrt{ \frac{ \sin \left( \delta + \phi \right) \sin \left( \phi - \beta \right)}{\cos \left( \delta + \theta \right) \cos \left( \beta - \theta \right)}} \ \right) ^2}$
$K_p = \frac{ \cos ^2 \left( \phi + \theta \right)}{\cos ^2 \theta \cos \left( \delta - \theta \right) \left( 1 - \sqrt{ \frac{ \sin \left( \delta + \phi \right) \sin \left( \phi + \beta \right)}{\cos \left( \delta - \theta \right) \cos \left( \beta - \theta \right)}} \ \right) ^2}$

Instead of evaluating the above equations or using commercial software applications for this, books of tables for the most common cases can be used. Generally instead of Ka, the horizontal part Kah is tabulated. It is the same as Ka times cos(δ+θ).

The actual earth pressure force Ea is the sum of a part Eag due to the weight of the earth, a part Eap due to extra loads such as traffic, minus a part Eac due to any cohesion present.

Eag is the integral of the pressure over the height of the wall, which equates to Ka times the specific gravity of the earth, times one half the wall height squared.

In the case of a uniform pressure loading on a terrace above a retaining wall, Eap equates to this pressure times Ka times the height of the wall. This applies if the terrace is horizontal or the wall vertical. Otherwise, Eap must be multiplied by cosθ cosβ / cos(θ − β).

Eac is generally assumed to be zero unless a value of cohesion can be maintained permanently.

Eag acts on the wall's surface at one third of its height from the bottom and at an angle δ relative to a right angle at the wall. Eap acts at the same angle, but at one half the height.

### Caquot and Kerisel

In 1948, Albert Caquot (1881–1976) and Jean Kerisel (1908–2005) developed an advanced theory that modified Muller-Breslau's equations to account for a non-planar rupture surface. They used a logarithmic spiral to represent the rupture surface instead. This modification is extremely important for passive earth pressure where there is soil-wall friction. Mayniel and Muller-Breslau's equations are unconservative in this situation and are dangerous to apply. For the active pressure coefficient, the logarithmic spiral rupture surface provides a negligible difference compared to Muller-Breslau. These equations are too complex to use, so tables or computers are used instead.

### Equivalent fluid pressure

Terzaghi and Peck, in 1948, developed empirical charts for predicting lateral pressures. Only the soil's classification and backfill slope angle are necessary to use the charts.

## Bell's relationship

For soils with cohesion, Bell developed an analytical solution that uses the square root of the pressure coefficient to predict the cohesion's contribution to the overall resulting pressure. These equations represent the total lateral earth pressure. The first term represents the non-cohesive contribution and the second term the cohesive contribution. The first equation is for an active situation and the second for passive situations.

$\sigma_h = K_a \sigma_v - 2c \sqrt{K_a} \$
$\sigma_h = K_p \sigma_v + 2c \sqrt{K_p} \$

## Coefficients of earth pressure

Coefficient of active earth pressure at rest

Coefficient of active earth pressure

Coefficient of passive earth pressure

## Notes

1. ^ Jaky J. (1948) Pressure in silos, 2nd ICSMFE, London, Vol. 1, pp 103-107.
2. ^ Mayne, P.W. and Kulhawy, F.H. (1982). “K0-OCR relationships in soil”. Journal of Geotechnical Engineering, Vol. 108 (GT6), 851-872.
3. ^ Ingold, T.S., (1979) The effects of compaction on retaining walls, Gèotechnique, 29, p265-283.
4. ^ Rankine, W. (1857) On the stability of loose earth. Philosophical Transactions of the Royal Society of London, Vol. 147.
5. ^ Coulomb C.A., (1776). Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l'architecture. Memoires de l'Academie Royale pres Divers Savants, Vol. 7
6. ^ Kramer S.L. (1996) Earthquake Geotechnical Engineering, Prentice Hall, New Jersey
7. ^ Mayniel K., (1808), Traité expérimental, analytique et preatique de la poussée des terres et des murs de revêtement, Paris.
8. ^ Müller-Breslau H., (1906) Erddruck auf Stutzmauern, Alfred Kroner, Stuttgart.

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Lateral_earth_pressure — Please support Wikipedia.
 4190 videos foundNext >
 At-rest, active, and passive earth pressureExplain the difference between the at-rest condition, active pressure, and passive pressure in teh context of excavation support systems. Note: Slight error in ... Mod-2 Lec-1 Lateral Earth pressure Theories & Retaining Walls-1Lecture Series on Foundation Engineering by Dr.Priti Maheshwari, Department of Civil Engineering, IIT Roorkee. For more details on NPTEL visit ... CE 540 Mod 2.2 Rankine Earth PressureCE 540 class presentation on Rankine earth pressure theory, module 2.2. Mod-2 Lec-3 Lateral Earth pressure Theories & Retaining Walls-3Lecture Series on Foundation Engineering by Dr.Priti Maheshwari, Department of Civil Engineering, IIT Roorkee. For more details on NPTEL visit ... Geotech - Find the Lateral Earth Pressure at a PointGreat geo problem to test you out! Head to http://www.civilengineeringacademy.com for more!! Get a breadth exam at ... Mod-2 Lec-2 Lateral Earth pressure Theories & Retaining Walls-2Lecture Series on Foundation Engineering by Dr.Priti Maheshwari, Department of Civil Engineering, IIT Roorkee. For more details on NPTEL visit ... CE 540 Mod 2.3 Coulomb Earth PressureCE 540 class presentation on Coulomb earth pressure theory. Horizontal stresses and retaining walls -part 2Rankine's theory of earth pressure. Mod-2 Lec-4 Lateral Earth Pressure Theories & Retaining Walls-4Lecture Series on Foundation Engineering by Dr.Priti Maheshwari, Department of Civil Engineering, IIT Roorkee. For more details on NPTEL visit ... Foundation Engineering Chap 2 Lec 9 Lateral Earth pressure Theories Retaining Walls 2
 4190 videos foundNext >
 6 news items
 geosynthetica.net (press release) Project Story: Reinforcing Crusher Walls geosynthetica.net (press release) Tue, 10 Feb 2015 06:37:30 -0800 Reinforced Crusher Walls By Maccaferri – Crusher walls, also known as mine dump walls, are used to support vertical or near-vertical grade changes to minimize the footprint of the facility. Hoppers or crushers can be installed within these walls. The New Indian Express Compound Wall of 3-storey Building Collapses The New Indian Express Sun, 14 Sep 2014 17:33:45 -0700 “The presence of a multi-storey building in the vicinity might have increased the lateral earth pressure on the wall, and led to the collapse,” said police officials. Local residents said that the owner of the adjacent plot, Jose, had carried out soil ... geosynthetica.net (press release) Seismic Behavior of Hybrid Reinforced Soil High Walls and Slopes geosynthetica.net (press release) Tue, 17 Sep 2013 14:01:58 -0700 In this approach, the lateral earth pressure distribution from Rankine or Coulomb earth pressure theory is integrated over a distance equal to the spacing between reinforcement layers and the resultant load is assigned to the target reinforcement layer ... geosynthetica.net (press release) EPS Geofoam Protects Pipelines from Earthquakes geosynthetica.net (press release) Tue, 08 Oct 2013 10:40:56 -0700 Bartlett's team confirmed that the loadings that cause compression may include static and dynamic lateral earth pressure swells, frost heave pressures, settlements of support soils, faulting, liquefaction, landslides and traffic loads,” Meier added ... Neighbor sues neighbor over retaining wall collapse on historic property Madison County Record Wed, 18 Mar 2009 17:45:00 -0700 The pipe also caused seepage, subsurface soil erosion and a substantial increase in lateral earth pressure behind the wall, the Wilsons allege. "At no time did Plaintiffs agree, give permission, acquiesce, or otherwise allow the Defendants' intrusion ... lets-do-diy Ltd Average retaining wall cost lets-do-diy Ltd Fri, 01 Oct 2010 05:53:08 -0700 There are a surprising amount of materials available which can be used to build a retaining wall and these include stone, wood, concrete, vinyl, brick, steel and other metals. Each of these materials will carry its own price and you should choose the ...
 Limit to books that you can completely read online Include partial books (book previews) .gsc-branding { display:block; }

Oops, we seem to be having trouble contacting Twitter