digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Aerial reconnaissance imagery being analysed.

Imagery intelligence (IMINT), is an intelligence gathering discipline which collects information via satellite and aerial photography. As a means of collecting intelligence, IMINT is a subset of intelligence collection management, which, in turn, is a subset of intelligence cycle management. IMINT is especially complemented by non-imaging MASINT electro-optical and radar sensors.

History[edit]

Origins[edit]

Main article: aerial reconnaissance
Sidney Cotton's Lockheed 12A, in which he made a high-speed reconnaissance flight in 1940.

Although aerial photography was first used extensively in the First World War, it was only in the Second World War that specialized imagery intelligence operations were initiated. High quality images were made possible with a series of innovations in the decade leading up to the war. In 1928, the RAF developed an electric heating system for the aerial camera. This allowed reconnaissance aircraft to take pictures from very high altitudes without the camera parts freezing.[1]

In 1939 Sidney Cotton and Flying Officer Maurice Longbottom of the RAF suggested that airborne reconnaissance may be a task better suited to fast, small aircraft which would use their speed and high service ceiling to avoid detection and interception. They proposed the use of Spitfires with their armament and radios removed and replaced with extra fuel and cameras. This led to the development of the Spitfire PR variants. These planes had a maximum speed of 396 mph[2] at 30,000 feet with their armaments removed, and were used for photo-reconnaissance missions. The aircraft were fitted with five cameras which were heated to ensure good results.[3]

RAF Medmenham, where aerial reconnaissance intelligence was analysed.

The systematic collection and interpretation of the huge amounts of aerial reconnaissance intelligence data soon became imperative. Beginning in 1941, RAF Medmenham was the main interpretation centre for photographic reconnaissance operations in the European and Mediterranean theatres.[4][5] The Central Interpretation Unit (CIU) was later amalgamated with the Bomber Command Damage Assessment Section and the Night Photographic Interpretation Section of No 3 Photographic Reconnaissance Unit, RAF Oakington, in 1942.[6]

During 1942 and 1943, the CIU gradually expanded and was involved in the planning stages of practically every operation of the war, and in every aspect of intelligence. In 1945, daily intake of material averaged 25,000 negatives and 60,000 prints. Thirty-six million prints were made during the war. By VE-day, the print library, which documented and stored worldwide cover, held 5,000,000 prints from which 40,000 reports had been produced.[6]

American personnel had for some time formed an increasing part of the CIU and on 1 May 1944 this was finally recognised by changing the title of the unit to the Allied Central Interpretation Unit (ACIU).[6] There were then over 1,700 personnel on the unit's strength. A large number of photographic interpreters were recruited from the Hollywood Film Studios including Xavier Atencio. Two renowned archaeologists also worked there as interpreters: Dorothy Garrod, the first woman to hold an Oxbridge Chair, and Glyn Daniel, who went on to gain popular acclaim as the host of the television game show Animal, Vegetable or Mineral?.[7]

Aerial photograph of the missile Test Stand VII at Peenemünde.

Sidney Cotton's aerial photographs were far ahead of their time. Together with other members of his reconnaissance squadron, he pioneered the technique of high-altitude, high-speed photography that was instrumental in revealing the locations of many crucial military and intelligence targets. Cotton also worked on ideas such as a prototype specialist reconnaissance aircraft and further refinements of photographic equipment. At its peak, British reconnaissance flights yielded 50,000 images per day to interpret.

Of particular significance in the success of the work of Medmenham was the use of stereoscopic images, using a between plate overlap of exactly 60%. Despite initial scepticism about the possibility of the German rocket technology, major operations, including the 1943 offensives against the V-2 rocket development plant at Peenemünde, where made possible by painstaking work carried out at Medmenham. Later offensives were also made against potential launch sites at Wizernes and 96 other launch sites in northern France.

It is claimed that Medmanham's greatest operational success was "Operation Crossbow" which, from 23 December 1943, destroyed the V-1 infrastructure in northern France.[7] According to R.V. Jones, photographs were used to establish the size and the characteristic launching mechanisms for both the V-1 flying bomb and the V-2 rocket.

Post war spyplanes[edit]

Soviet truck convoy deploying missiles near San Cristobal, Cuba, on Oct. 14, 1962 (taken by a U-2)

Immediately after World War II, long range aerial reconnaissance was taken up by adapted jet bombers – such as the English Electric Canberra, and its American development, the Martin B-57 – capable of flying higher or faster than the enemy.

Highly specialized and secretive strategic reconnaissance aircraft, or spy planes, such as the Lockheed U-2 and its successor, the SR-71 Blackbird were developed by the United States. Flying these aircraft became an exceptionally demanding task, as much because of the aircraft's extreme speed and altitude as it was because of the risk of being captured as spies. As a result, the crews of these aircraft were invariably specially selected and trained.

There are claims that the US constructed a hypersonic reconnaissance aircraft, dubbed the Aurora, in the late 1980s to replace the Blackbird. Since the early 1960s, in the United States aerial and satellite reconnaissance has been coordinated by the National Reconnaissance Office.

Use of satellites[edit]

Serum and Vaccine Institute in Al-A'amiriya, Iraq, as imaged by a US reconnaissance satellite in November 2002.

Early photographic reconnaissance satellites used photographic film, which was exposed on-orbit and returned to earth for developing. These satellites remained in orbit for days, weeks, or months before ejecting their film-return vehicles, called "buckets." Between 1959 and 1984 the U.S. launched around 200 such satellites under the codenames CORONA and GAMBIT, with ultimate photographic resolution (ground-resolution distance) better than 4 inches (0.10 m).[8] The first successful mission concluded on 1960-08-19 with the mid-air recovery by a C-119 of film from the Corona mission code-named Discoverer 14. This was the first successful recovery of film from an orbiting satellite and the first aerial recovery of an object returning from Earth orbit.[9] Because of a tradeoff between area covered and ground resolution, not all reconnaissance satellites have been designed for high resolution; the KH-5-ARGON program had a ground resolution of 140 meters and was intended for mapmaking.

Between 1961 and 1994 the USSR launched perhaps 500 Zenit film-return satellites, which returned both the film and the camera to earth in a pressurized capsule.

The U.S. KH-11 series of satellites, first launched in 1976, was made by Lockheed, the same contractor who built the Hubble Space Telescope. HST has a 2.4 metre telescope mirror and is believed to have had a similar appearance to the KH-11 satellites. These satellites used charge-coupled devices, predecessors to modern digital cameras, rather than film. Russian reconnaissance satellites with comparable capabilities are named Resurs DK and Persona.

Aircraft[edit]

Low- and high-flying planes have been used all through the last century to gather intelligence about the enemy. U.S. high-flying reconnaissance planes include the Lockheed U-2, and the much faster SR-71 Blackbird, (retired in 1998). Planes have the advantage over satellites that they can usually produce more detailed photographs and can be placed over the target more quickly, more often, and more cheaply, but have the disadvantage of possibly being intercepted by aircraft or missiles such as in the 1960 U-2 incident.

Unmanned aerial vehicles have been developed for imagery and signals intelligence. These drones are a force multiplier by giving the battlefield commander an "eye in the sky" without risking a pilot. The US Army is significantly increasing the size of its current UAV force as part of the Future Combat System initiative.

Satellite[edit]

Though the resolution of satellite photographs, which must be taken from distances of hundreds of kilometers, is usually poorer than photographs taken by air, satellites offer the possibility of coverage for much of the earth, including hostile territory, without exposing human pilots to the risk of being shot down.

Ground-resolution distance achieved by KH-8

There have been hundreds of reconnaissance satellites launched by dozens of nations since the first years of space exploration. Satellites for imaging intelligence were usually placed in low-earth, high-inclination orbits, sometimes in sun-synchronous orbits. Since the film-return missions were usually short, they could indulge in orbits with low perigees, in the range of 100–200 km, but the more recent CCD-based satellites have been launched into higher orbits, 250–300 km perigee, allowing each to remain in orbit for several years. While the exact resolution and other details of modern spy satellites are classified, some idea of the trade-offs available can be made using simple physics. The formula for the highest possible resolution of an optical system with a circular aperture is given by the Rayleigh criterion:

 \sin \theta = 1.22 \frac{\lambda}{D}

and

 \sin \theta =  \frac{size}{distance}

we can get

 size =  1.22\frac{\lambda}{D}distance

where θ is the angular resolution, λ is the wavelength of light, and D is the diameter of the lens or mirror. Were the Hubble Space Telescope, with a 2.4 m telescope, designed for photographing Earth, it would be diffraction-limited to resolutions greater than 16 cm (6 inches) for green light ( \lambda \approx  550 nm) at its orbital altitude of 590 km. This means that it would be impossible to take photographs showing objects smaller than 16 cm with such a telescope at such an altitude. Modern U.S. IMINT satellites are believed to have around 10 cm resolution; contrary to references in popular culture, this is sufficient to detect any type of vehicle, but not to read the headlines of a newspaper.[10]

The primary purpose of most spy satellites is to monitor visible ground activity. While resolution and clarity of images has improved greatly over the years, this role has remained essentially the same. Some other uses of satellite imaging have been to produce detailed 3D maps for use in operations and missile guidance systems, and to monitor normally invisible information such as the growth levels of a country's crops or the heat given off by certain facilities. Some of the multi-spectral sensors, such as thermal measurement, are more electro-optical MASINT than true IMINT platforms.

To counter the threat posed by these 'eyes in the sky', the United States, USSR/Russia, China and possibly others, have developed systems for destroying enemy spy satellites (either with the use of another 'killer satellite', or with some sort of Earth- or air-launched missile).

Since 1985, commercial vendors of satellite imagery have entered the market, beginning with the French SPOT satellites, which had resolutions between 5 and 20 metres. Recent high-resolution (4 – 0.5 metre) private imaging satellites include TerraSAR-X, IKONOS, Orbview, QuickBird and Worldview-1, allowing any country (or any business for that matter) to buy access to satellite images.

See also[edit]

Notes[edit]

  1. ^ "Photography Before Edgerton". 
  2. ^ Downing, Taylor (2011). Spies in the Sky. Little Brown Hardbacks (A & C). p. 42. ISBN 9781408702802. 
  3. ^ Cotton, Sidney (1969). Aviator Extraordinary: The Sidney Cotton Story. Chatto & Windus. p. 169. ISBN 0-7011-1334-0. 
  4. ^ Downing, Taylor (2011). Spies in the Sky. Little Brown Hardbacks (A & C). pp. 80–81. ISBN 9781408702802. 
  5. ^ Unlocking Buckinghamshire's Past
  6. ^ a b c Allied Central Interpretation Unit (ACIU)
  7. ^ a b "Operation Crossbow", BBC2, broadcast 15 May 2011
  8. ^ "The GAMBIT Story, Appendix A, page 154, initial Sept. 2011 release". National Reconnaissance Office. June 1991. 
  9. ^ "Discoverer 14 - NSSDC ID: 1960-010A". NASA. 
  10. ^ "Imint resolution comparison". Federation of American Scientists. 

Further reading[edit]

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Imagery_intelligence — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
109496 videos foundNext > 

35G Geospatial Intelligence Imagery Analyst

From Combined Arms to Combined Intelligence: Philosophy, Doctrine & Operations - Module I

Those who master combined arms operations generally achieve victory in war. The mastery of combined arms operations, however, is no simple matter. Organizati...

Introduction to GeoSpatial Inteligence

A short presentation by Tam Nguyen Goals: raise the awareness about the importance of Geo Spatial Intelligence in accomplishing any mission's objectives. Cre...

One Force - Unmanned Aerial Vehicle Pilot and Air Imagery Intelligence Expert

Now you can be the ever watchful eye of the RSAF in the sky as an Unmanned Aerial Vehicle Pilot or Air Imagery Intelligence Expert. Watch this video to find ...

SIGINT Signals Intelligence IMINT Imagery Intelligence May 21, 2014 182947 to July 6 2014 172547 UT

View the video from different distances from a screen larger than a cell phone) There is no Photoshop involved. The truth can not be covered up. There shoul...

(SIGINT) Signals Intelligence (IMINT) Imagery Intelligence- December 31, 2013 to January 14, 2014

View the video from different distances from a screen larger than a cell phone) There is no Photoshop involved. The truth can not be covered up.There should...

(SIGINT) Signals Intelligence (IMINT) Imagery Intelligence 757 FRAMES=10 DAYS=243 HRS

View the video from different distances from a screen larger than a cell phone) THERE SHOULD BE TIME NO LONGER. Imagine the size of an up-to-date video, tha...

SIGINT Signals Intelligence IMINT Imagery Intelligence June 4, 2014 015947 to June 24 2014 234447 U

View the video from different distances from a screen larger than a cell phone) There is no Photoshop involved. The truth can not be covered up. There shoul...

SIGINT-Signals Intelligence (IMINT) Imagery Intelligence-Space Weather 1 of 3

View the video from different distances from a screen larger than a cell phone) There is no Photoshop involved. The truth can not be covered up.There should...

(SIGINT) Signals Intelligence (IMINT) Imagery Intelligence- There should be time no longer

View the video from different distances from a screen larger than a cell phone) Yes I am still without real time satellite access. You can read the Testamen...

109496 videos foundNext > 

14 news items

 
Daily Sabah
Tue, 19 Aug 2014 05:53:40 -0700

Using unmanned spy planes, other aircraft and satellite imagery, intelligence experts are gathering mobile phone call data and movements on the ground in Iraq and Syria," the newspaper said. "Al-Baghdadi is elusive but he will be found eventually.

Ahlul Bayt News Agency - abna.ir

Ahlul Bayt News Agency - abna.ir
Sun, 17 Aug 2014 15:52:30 -0700

Using unmanned spy planes, other aircraft and satellite imagery, intelligence experts are gathering mobile phone call data and movements on the ground in Iraq and Syria . A source said: “Al-Baghdadi is elusive but he will be found eventually. "His ...
 
WhaTech
Tue, 12 Aug 2014 08:34:06 -0700

... climate change research, weather prediction, and land management activities. Growth of the commercial satellite imagery is driven by increasing demand from defense sector, predominantly by countries with large imagery intelligence (IMINT) requirements.
 
Huffington Post
Sun, 03 Aug 2014 20:00:00 -0700

This undated U.S. Air Force handout image shows a RC-135 Reconnaissance plane used to gather 'imagery intelligence (IMINT), telemetry intelligence (TELINT), and signals intelligence (SIGINT).' | USAF via Getty Images ...

Breaking Defense

Breaking Defense
Tue, 12 Aug 2014 14:50:45 -0700

When we have the data and the memory, we can actually do millions and trillions of operations very quickly.” Topics: DigitalGlobe, hyperspectral imagery, intelligence surveillance and reconnaissance, Kumar Navulur, processing exploitation dissemination ...

SatNews Publishers

Space Daily
Fri, 01 Aug 2014 05:33:31 -0700

... to increase as established space countries replace and expand their in-orbit satellite systems and more countries acquire their first operational satellite systems, usually for communications and broadcasting or for Earth observation and imagery ...
 
TelevisionPost
Tue, 05 Aug 2014 12:07:30 -0700

... to increase as established space countries replace and expand their in-orbit satellite systems and more countries acquire their first operational satellite systems, usually for communications & broadcasting or for Earth observation & imagery ...

Tel Avivre

Tel Avivre
Sun, 03 Aug 2014 03:41:15 -0700

Les analystes estiment que NROL39, le dernier satellite « im-int » ou « imagery intelligence » américain a permis d'obtenir la cartographie la plus précise du réseau réticulaire souterrain du Hamas. Les journalistes qui, par hardiesse ou inconscience ...
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Imagery intelligence

You can talk about Imagery intelligence with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!