digplanet beta 1: Athena
Share digplanet:


Applied sciences






















The 108 free heptominoes

A heptomino (or 7-omino) is a polyomino of order 7, that is, a polygon in the plane made of 7 equal-sized squares connected edge-to-edge.[1] The name of this type of figure is formed with the prefix hept(a)-. When rotations and reflections are not considered to be distinct shapes, there are 108 different free heptominoes. When reflections are considered distinct, there are 196 one-sided heptominoes. When rotations are also considered distinct, there are 760 fixed heptominoes.[2][3]


The figure shows all possible free heptominoes, coloured according to their symmetry groups:

  • 9 heptominoes (coloured red) have an axis of reflection symmetry aligned with the gridlines. Their symmetry group has two elements, the identity and the reflection in a line parallel to the sides of the squares.
Reflection Symmetrical Heptominoes-90-deg.svg
  • 7 heptominoes (coloured green) have an axis of reflection symmetry at 45° to the gridlines. Their symmetry group has two elements, the identity and a diagonal reflection.
Reflection Symmetrical Heptominoes-45-deg.svg
  • 4 heptominoes (coloured blue) have point symmetry, also known as rotational symmetry of order 2. Their symmetry group has two elements, the identity and the 180° rotation.
Rotation Symmetrical Heptominoes.svg
  • 3 heptominoes (coloured purple) have two axes of reflection symmetry, both aligned with the gridlines. Their symmetry group has four elements, the identity, two reflections and the 180° rotation. It is the dihedral group of order 2, also known as the Klein four-group.
  • 1 heptomino (coloured orange) has two axes of reflection symmetry, both aligned with the diagonals. Its symmetry group also has four elements. Its symmetry group is also the dihedral group of order 2 with four elements.
Rotation and Reflection Symmetrical Heptominoes.svg

If reflections of a heptomino are considered distinct, as they are with one-sided heptominoes, then the first and fourth categories above would each double in size, resulting in an extra 88 heptominoes for a total of 196. If rotations are also considered distinct, then the heptominoes from the first category count eightfold, the ones from the next three categories count fourfold, and the ones from the last two categories count twice. This results in 84 × 8 + (9+7+4) × 4 + (3+1) × 2 = 760 fixed heptominoes.

Packing and tiling[edit]

Of the 108 free heptominoes, 101 of them satisfy the Conway criterion and 3 more of them can form a patch satisfying the criterion. Thus, only 4 heptominoes fail to satisfy the criterion and, in fact, these 4 are unable to tessellate the plane.[4]

Heptominoes incapable of tiling a plane, including the one heptomino with a hole.

Although a complete set of the 108 free heptominoes has a total of 756 squares, it is not possible to tile a rectangle with them. The proof of this is trivial, since there is one heptomino which has a hole.[5] It is also impossible to pack them into a 757-square rectangle with a one-square hole because 757 is a prime number.


  1. ^ Golomb, Solomon W. (1994). Polyominoes (2nd ed.). Princeton, New Jersey: Princeton University Press. ISBN 0-691-02444-8. 
  2. ^ Weisstein, Eric W. "Heptomino". From MathWorld – A Wolfram Web Resource. Retrieved 2008-07-22. 
  3. ^ Redelmeier, D. Hugh (1981). "Counting polyominoes: yet another attack". Discrete Mathematics 36 (2): 191–203. doi:10.1016/0012-365X(81)90237-5. 
  4. ^ Rhoads, Glenn C. (2005). "Planar tilings by polyominoes, polyhexes, and polyiamonds". Journal of Computational and Applied Mathematics 174 (2): 329–353. doi:10.1016/j.cam.2004.05.002. 
  5. ^ Grünbaum, Branko; Shephard, G. C. (1987). Tilings and Patterns. New York: W. H. Freeman and Company. ISBN 0-7167-1193-1. 

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Heptomino — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.

4 news items


Mon, 01 Dec 2014 07:43:15 -0800

W lipcu tego roku znakomity dziennikarz i publicysta, Paweł Kozierkiewicz, pisał na łamach serwisu Antyweb o wysiłkach firmy Heptomino, zmierzających do wskrzeszenia kultowych polskich gier – Freda i Lasermanii, pochodzących jeszcze z czasów ...


Mon, 12 Jan 2015 04:09:39 -0800

Na początku roku na platformach mobilnych zagramy ponownie w tak leciwe produkcje jak Fred i Lasermania, za przygotowanie których odpowiada studio Heptomino. W maju powrócą również Polanie (PC, iOS, Android, Windows Phone). Za ten projekt ...

Gadzeto Mania

Gadzeto Mania
Wed, 21 May 2014 16:44:30 -0700

Fred i Lasermania powrócą dzięki nowo powstałemu studiu Heptomino, które współpracować będzie z Laboratorium Komputerowym Avalon. Obie firmy pracują nad przeniesieniem legendarnych polskich gier na sprzęt mobilny. I tu zaskoczenie – wcale nie ...

Le Figaro

Le Figaro
Sun, 20 Apr 2008 00:00:00 -0700

... le jeu de gestion doté de la plus grande durée de vie. Depuis l'invention du « Game of Life », ils ont découvert des motifs aux noms étranges, parmi lesquels le B-Heptomino, la Reine des Abeilles, le Pulsar, les Vaisseaux spatiaux, les Jardins d ...

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight