digplanet beta 1: Athena
Share digplanet:


Applied sciences






















Glutaminolysis (glutamine + -lysis) is a series of biochemical reactions by which the amino acid glutamine is lysed to glutamate, aspartate, CO2, pyruvate, lactate, alanine and citrate.[1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20]

The glutaminolytic pathway[edit]

Glutaminolysis partially recruits reaction steps from the citric acid cycle and the malate-aspartate shuttle.

Reaction steps from glutamine to α-ketoglutarate[edit]

The conversion of the amino acid glutamine to α-ketoglutarate takes place in two reaction steps:

Conversion of glutamine to α-ketoglutarate

1. Hydrolysis of the amino group of glutamine yielding glutamate and ammonium. Catalyzing enzyme: glutaminase (EC

2. Glutamate can be excreted or can be further metabolized to α-ketoglutarate.

For the conversion of glutamate to α-ketoglutarate three different reactions are possible:

Catalyzing enzymes:

Recruited reaction steps of the citric acid cycle and malate aspartate shuttle[edit]

The glutaminolytic pathway. Figure legend: blue color = reaction steps of the citric acid cycle; brown color = reaction steps of the malate aspartate shuttle; green color = enzymes overexpressed in tumors. 1 = glutaminase, 2 = GOT, 3 = α-ketoglutarate dehydrogenase, 4 = succinate dehydrogenase, 5 = fumarase, 6 = malate dehydrogenase, 7a = cytosolic malic enzyme, 7b = mitochondrial malic enzyme, 8 = citrate synthase, 9 = aconitase, 10 = lactate dehydrogenase
  • α-ketoglutarate + NAD+ + CoASH → succinyl-CoA + NADH+H+ + CO2

catalyzing enzyme: α-ketoglutarate dehydrogenase complex

  • succinyl-CoA + GDP + Pi → succinate + GTP

catalyzing enzyme: succinyl-CoA-synthetase, EC

  • succinate + FAD → fumarate + FADH2

catalyzing enzyme: succinate dehydrogenase, EC

  • fumarate + H2O → malate

catalyzing enzyme: fumarase, EC

  • malate + NAD+ → oxaloacetate + NADH + H+

catalyzing enzyme: malate dehydrogenase, EC (component of the malate aspartate shuttle)

  • oxaloacetate + acetyl-CoA + H2O → citrate + CoASH

catalyzing enzyme: citrate synthase, EC

Reaction steps from malate to pyruvate and lactate[edit]

The conversion of malate to pyruvate and lactate is catalyzed by

  • NAD(P) dependent malate decarboxylase (malic enzyme; EC and and
  • lactate dehydrogenase (LDH; EC

according to the following equations:

  • malate + NAD(P)+→ pyruvate + NAD(P)H + H+ + CO2
  • pyruvate + NADH + H+ → lactate + NAD+

Intracellular compartmentalization of the glutaminolytic pathway[edit]

The reactions of the glutaminolytic pathway take place partly in the mitochondria and to some extent in the cytosol (compare the metabolic scheme of the glutaminolytic pathway).

Glutaminolysis: an important energy source in tumor cells[edit]

Glutaminolysis takes place in all proliferating cells, such as lymphocytes, thymocytes, colonocytes, adipocytes and especially in tumor cells.[1][2][3][4][5][6][7][8][10][11][12][13][14][16][18][19][21] In tumor cells the citric acid cycle is truncated due to an inhibition of the enzyme aconitase (EC by high concentrations of reactive oxygen species (ROS)[22][23] Aconitase catalyzes the conversion of citrate to isocitrate. On the other hand tumor cells over express phosphate dependent glutaminase and NAD(P)-dependent malate decarboxylase,[9][24][25][26][27] which in combination with the remaining reaction steps of the citric acid cycle from α-ketoglutarate to citrate impart the possibility of a new energy producing pathway, the degradation of the amino acid glutamine to glutamate, aspartate, pyruvate CO2, lactate and citrate.

Besides glycolysis in tumor cells glutaminolysis is another main pillar for energy production. High extracellular glutamine concentrations stimulate tumor growth and are essential for cell transformation.[26][28] On the other hand a reduction of glutamine correlates with phenotypical and functional differentiation of the cells.[29]

Energy efficacy of glutaminolysis in tumor cells[edit]

  • one ATP by direct phosphorylation of GDP
  • two ATP from oxidation of FADH2
  • three ATP at a time for the NADH + H+ produced within the α-ketoglutarate dehydrogenase reaction, the malate dehydrogenase reaction and the malate decarboxylase reaction.

Due to low glutamate dehydrogenase and glutamate pyruvate transaminase activities, in tumor cells the conversion of glutamate to alpha-ketoglutarate mainly takes place via glutamate oxaloacetate transaminase.[5][30]

Advantages of glutaminolysis in tumor cells[edit]

  • Glutamine is the most abundant amino acid in the plasma and an additional energy source in tumor cells especially when glycolytic energy production is low due to a high amount of the dimeric form of M2-PK.
  • Glutamine and its degradation products glutamate and aspartate are precursors for nucleic acid and serine synthesis.
  • Glutaminolysis is insensitive to high concentrations of reactive oxygen species (ROS).
  • Due to the truncation of the citric acid cycle the amount of acetyl-CoA infiltrated in the citric acid cycle is low and acetyl-CoA is available for de novo synthesis of fatty acids and cholesterol. The fatty acids can be used for phospholipid synthesis or can be released.[31]
  • Fatty acids represent an effective storage vehicle for hydrogen. Therefore, the release of fatty acids is an effective way to get rid of cytosolic hydrogen produced within the glycolytic glyceraldehyde 3-phosphate dehydrogenase (GAPDH; EC reaction.[32]
  • Glutamate and fatty acids are immunosuppressive. The release of both metabolites may protect tumor cells from immune attacks.[33][34][35]
  • It has been discussed that the glutamate pool may drive the endergonic uptake of other amino acids by system ASC.[17]

See also[edit]

citric acid cycle, malate-aspartate shuttle


  1. ^ a b Krebs, HA; Bellamy D (1960). "The interconversion of glutamic acid and aspartic acid in respiring tissues". Biochem. J. 75: 523–529. PMC 1204504. PMID 14411856. 
  2. ^ a b Reitzer, LJ; Wice BM and Kennell D (1979). "Evidence that glutamine, not sugar, is the major energy source for cultured HeLa-cells". J. Biol. Chem. 254 (8): 2669–2676. PMID 429309. 
  3. ^ a b Zielke, HR; Sumbilla CM, Sevdalian DA, Hawkins RL and Ozand PT (1980). "Lactate: a major product of glutamine metabolism by human diploid fibroblasts". J. Cell. Physiol. 104 (3): 433–441. doi:10.1002/jcp.1041040316. PMID 7419614. 
  4. ^ a b Mc Keehan, WL (1982). "Glycolysis, glutaminolysis and cell proliferation". Cell Bio. Int. Rep. 6 (7): 635–650. doi:10.1016/0309-1651(82)90125-4. PMID 6751566. 
  5. ^ a b c Moreadith RW, RW; Lehninger AL (1984). "The pathways of glutamate and glutamine oxidation by tumor cell mitochondria". J. Biol. Chem. 259 (10): 6215–6221. PMID 6144677. 
  6. ^ a b Zielke, HR; Zielke CL and Ozand PT (1984). "Glutamine: a major energy source for cultured mammalian cells". Fed. Proc. 43 (1): 121–125. PMID 6690331. 
  7. ^ a b Eigenbrodt, E; Fister P; Reinacher M (1985). "New perspectives on carbohydrate metabolism in tumor cells". In: Regulation of Carbohydrate Metabolism, CRC Press, Boca Raton, Fl 2: 141–179. ISBN 0-8493-5263-0. 
  8. ^ a b Lanks, KW (1987). "End products of glucose and glutamine metabolism by L929 cells". J. Biol. Chem. 262 (21): 10093–10097. PMID 3611053. 
  9. ^ a b Board, M; Humm S and Newsholme EA (1990). "Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells". Biochem. J. 265 (2): 503–509. PMC 1136912. PMID 2302181. 
  10. ^ a b Medina, MA; Nunez de Castro I (1990). "Glutaminolysis and glycolysis interactions in proliferant cells". Int. J. Biochem. 22 (7): 681–683. doi:10.1016/0020-711X(90)90001-J. PMID 2205518. 
  11. ^ a b Goossens, V; Grooten J and Fiers W (1996). "The oxidative metabolism of glutamine. A modulator of reactive oxygen intermediate-mediated cytotoxicity of tumor necrosis factor in L929 fibrosarcoma cells". J. Biol. Chem. 271 (1): 192–196. doi:10.1074/jbc.271.1.192. PMID 8550558. 
  12. ^ a b Mazurek, S; Michel A and Eigenbrodt E (1997). "Effect of extracellular AMP on cell proliferation and metabolism of breast cancer cell lines with high and low glycolytic rates". J. Biol. Chem. 272 (8): 4941–4952. doi:10.1074/jbc.272.8.4941. PMID 9030554. 
  13. ^ a b Eigenbrodt, E; Kallinowski F, Ott M, Mazurek S and Vaupel P (1998). "Pyruvate kinase and the interaction of amino acid and carbohydrate metabolism in solid tumors". Anticancer Res. 18 (5A): 3267–3274. PMID 9858894. 
  14. ^ a b Piva, TJ; McEvoy-Bowe E (1998). "Oxidation of glutamine in HeLa cells: role and control of truncated TCA cycles in tumour mitochondria". J. Cell Biochem. 68 (2): 213–225. doi:10.1002/(SICI)1097-4644(19980201)68:2<213::AID-JCB8>3.0.CO;2-Y. PMID 9443077. 
  15. ^ Mazurek, S; Eigenbrodt E, Failing K and Steinberg P (1999). "Alterations in the glycolytic and glutaminolytic pathways after malignant transformation of rat liver oval cells". J. Cell. Physiol. 181 (1): 136–146. doi:10.1002/(SICI)1097-4652(199910)181:1<136::AID-JCP14>3.0.CO;2-T. PMID 10457361. 
  16. ^ a b Mazurek, S; Zwerschke W, Jansen-Dürr P and Eigenbrodt E (2001). "Effects of the human papilloma virus HPV-16 E7 oncoprotein on glycolysis and glutaminolysis: role of pyuvate kinase type M2 and the glycolytic enzyme complex". Biochem. J. 356 (Pt 1): 247–256. doi:10.1042/0264-6021:3560247. PMC 1221834. PMID 11336658. 
  17. ^ a b Aledo, JC (2004). "Glutamine breakdown in rapidly dividing cells: waste or investment ?". BioEssays 26 (7): 778–785. doi:10.1002/bies.20063. PMID 15221859. 
  18. ^ a b Rossignol, R; Gilkerson R, Aggeler R, Yamagata K, Remington SJ and Capaldi RA (2004). "Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells". Cancer Res. 64 (3): 985–993. doi:10.1158/0008-5472.CAN-03-1101. PMID 14871829. 
  19. ^ a b Mazurek, S (2007). "Tumor cell energetic metabolome". In: Molecular System Bioenergetics (Saks, V ed.) Wiley-VCH, Weinheim, Germany: 521–540. ISBN 978-3-527-31787-5. 
  20. ^ DeBerardinis, RJ; Sayed N; Ditsworth D; Thompson CB (2008). "Brick by brick: metabolism and tumor growth". Current Opinion in Genetics & Development 18 (1): 54–61. doi:10.1016/j.gde.2008.02.003. PMC 2476215. PMID 18387799. 
  21. ^ Wolfrom, C; Kadhom N, Polini G, Poggi J, Moatti N and Gautier M (1989). "Glutamine dependency of human skin fibroblasts: modulation of hexoses". Exp. Cell Res. 183 (2): 303–318. doi:10.1016/0014-4827(89)90391-1. PMID 2767153. 
  22. ^ Gardner, PR; Raineri I, Epstein LB and White CW (1995). "Superoxide radical and iron modulate aconitase activity in mammalian cells". J. Biol. Chem. 270 (22): 13399–13405. doi:10.1074/jbc.270.22.13399. PMID 7768942. 
  23. ^ Kim, KH; Rodriguez AM, Carrico PM and Melendez JA (2001). "Potential mechanisms for the inhibition of tumor cell growth by manganese superoxide dismutase". Antioxid. Redox. Signal. 3 (3): 361–373. doi:10.1089/15230860152409013. PMID 11491650. 
  24. ^ Matsuno, T; Goto I (1992). "Glutaminase and glutamine synthetase activities in human cirrhotic liver and hepatocellular carcinoma". Cancer Res. 52 (5): 1192–1194. PMID 1346587. 
  25. ^ Aledo, JC; Segura JA, Medina MA, Alonso FJ, Nunez de Castro I and Marquez J (1994). "Phosphate-activated glutaminase expression during tumor development". FEBS Lett. 341 (1): 39–42. doi:10.1016/0014-5793(94)80236-X. PMID 8137919. 
  26. ^ a b Lobo, C; Ruiz-Bellido MA, Aledo JC, Marquez J, Nunez De Castro I and Alonso FJ (2000). "Inhibition of glutaminase expression by antisense mRNA decreases growth and tumourigenicity of tumour cells". Biochem. J. 348 (2): 257–261. doi:10.1042/0264-6021:3480257. PMC 1221061. PMID 10816417. 
  27. ^ Mazurek, S; Grimm H, Oehmke M, Weisse G, Teigelkamp S and Eigenbrodt E (2000). "Tumor M2-PK and glutaminolytic enzymes in the metabolic shift of tumor cells". Anticancer Res. 20 (6D): 5151–5154. PMID 11326687. 
  28. ^ Turowski, GA; Rashid Z, Hong F, Madri JA and Basson MD (1994). "Glutamine modulates phenotype and stimulates proliferation in human colon cancer cell lines". Cancer Res. 54 (22): 5974–5980. PMID 7954430. 
  29. ^ Spittler, A; Oehler R, Goetzinger P, Holzer S, Reissner CM, Leutmezer J, Rath V, Wrba F, Fuegger R, Boltz-Nitulescu G and Roth E (1997). "Low glutamine concentrations induce phenotypical and functional differentiation of U937 myelomonocytic cells". J. Nutr. 127 (11): 2151–2157. PMID 9349841. 
  30. ^ Matsuno, T (1991). "Pathway of glutamate oxidation and its regulation in HuH13 line of human hepatoma cells". J. Cell. Physiol. 148 (2): 290–294. doi:10.1002/jcp.1041480215. PMID 1679060. 
  31. ^ Parlo, RA; Coleman PS (1984). "Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol". J. Biol. Chem. 259 (16): 9997–10003. PMID 6469976. 
  32. ^ Mazurek, S; Grimm H, Boschek CB, Vaupel P and Eigenbrodt E (2002). "Pyruvate kinase type M2: a crossroad in the tumor metabolome". Brit. J. Nutr. 87: S23–S29. doi:10.1079/BJN2001455. PMID 11895152. 
  33. ^ Eck, HP; Drings P and Dröge W (1989). "Plasma glutamate levels, lymphocyte reactivity and death in patients with bronchial carcinoma". J. Cancer Res. Clin. Oncol. 115 (6): 571–574. doi:10.1007/BF00391360. PMID 2558118. 
  34. ^ Grimm, H; Tibell A; Norrlind B; Blecher C; Wilker S; Schwemmle K (1994). "Immunoregulation by parental lipids: impact of the n-3 to n-6 fatty acid ratio". J. Parenter. Enteral. Nutr. 18 (5): 417–421. doi:10.1177/0148607194018005417. PMID 7815672. 
  35. ^ Jiang, WG; Bryce RP and Hoorobin DF (1998). "Essential fatty acids: molecular and cellular basis of their anti-cancer action and clinical implications". Crit. Rev. Oncol. Hematol. 27 (3): 179–209. doi:10.1016/S1040-8428(98)00003-1. PMID 9649932. 

External links[edit]

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Glutaminolysis — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
9 videos found

Altered Metabolic Energy Pathways and Cancer Diet

http://www.amazon.com/Cancer-Diet-Understanding-Metabolic-Origin-ebook/dp/B00SDQ49ZK/ In general, glycolysis is increased in cancer and this causes tumor cells to import glucose for glycolysis....

How to Pronounce Glutaminolysis

This video shows you how to pronounce Glutaminolysis.

Dr Rasheed, metabolic integration 3 ''exercise&pregnancy''

6\3\2010 -glutaminolysis -source of energy in muscular exercise -creatine phosphate shuttle -metabolic interrelationship of tissues in prgnancy -metabolic interrelationship of tissues in lactation.

How to Pronounce Grabbers

This video shows you how to pronounce Grabbers.

How to Pronounce Homoplastic

This video shows you how to pronounce Homoplastic.

How to Pronounce Hildings

This video shows you how to pronounce Hildings.

How to Pronounce Hearthstones

This video shows you how to pronounce Hearthstones.


METAFORA biosystems is proud to announce the launch of its first line of products valorizing its proprietary RBD technology in the research market. RBDs are ligands that can be used in flow...

How to Pronounce Groundhoppers

This video shows you how to pronounce Groundhoppers.

9 videos found

7 news items

Cancer Network
Wed, 15 May 2013 08:19:32 -0700

The extent of metabolic reprogramming that occurs in tumor cells goes far beyond the glycolytic behavior, encompassing nearly all metabolic routes, including glutaminolysis, lipogenesis, fatty acid oxidation, gluconeogenesis, and the pentose phosphate ...
Food Consumer
Sat, 29 Jun 2013 22:26:24 -0700

If protein is at, say, for example, two or three grams per kilogram per day that is probably going to feed in through the gluconeogenic pathway and contribute to glutaminolysis. It will be hard to deplete your glycogen stores, which is necessary to ...

科学时报 (博客)

科学时报 (博客)
Wed, 05 Nov 2014 23:01:23 -0800

The model showed three possible mechanisms for producing succinate: from α-ketoglutarate produced by the CAC, derived from glycolysis, fatty acid oxidation, and glutaminolysis (grey box), from ...
生物谷 (新闻发布)
Wed, 14 Nov 2012 18:32:43 -0800

2012年11月14日讯/生物谷BIOON/ --致癌基因Myc基因改变细胞线粒体的代谢,使得肿瘤细胞能依赖于谷氨酰胺生存。事实上,难以治疗的癌症中有40%发生了Myc基因突变。 因此,剥夺细胞的谷氨酰胺能选择性诱导Myc基因突变 ...
生物谷 (新闻发布)
Sat, 26 May 2012 22:27:58 -0700

近日,一队来自新加坡国立大学(NUS)的生物科学系和机械生物学研究所的科学家团队已经发现一种在研的潜在的药物临床前试验药物的铅化合物可以剥夺癌细胞的能量,阻止肿瘤细胞生长成肿瘤。这种药物的先导化合物被命名 ...
Fri, 30 Mar 2012 13:14:37 -0700

近期哈佛大学医学院的著名癌症遗传学家Pier Paolo Pandolfi发表了题为“Systemic Elevation of PTEN Induces a Tumor-Suppressive Metabolic State”的文章,报道了近年来热门的抑癌基因:PTEN基因最新研究成果,解析 ...
Mon, 13 Apr 2009 00:00:00 -0700

生物通报道,Johns Hopkins大学医学院细胞生物学系,肿瘤学系,病理系,Mckusick-Nathans遗传学研究所等处的研究人员对癌细胞瓦氏效应的研究又取得新的进展,相关研究成果刊登在最新一期的Nature杂志上,文章标题为:c ...

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight