digplanet beta 1: Athena
Share digplanet:


Applied sciences






















In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry. Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms. It was enthusiastically promoted by John Wheeler in the 1960s, and work on it continues in the 21st century.

Einstein's geometrodynamics[edit]

The term geometrodynamics is loosely used as a synonym for general relativity. More properly, some authors use the phrase Einstein's geometrodynamics to denote the initial value formulation of general relativity, introduced by Arnowitt, Deser, and Misner (ADM formalism) around 1960. In this reformulation, spacetimes are sliced up into spatial hyperslices in a rather arbitrary fashion, and the vacuum Einstein field equation is reformulated as an evolution equation describing how, given the geometry of an initial hyperslice (the "initial value"), the geometry evolves over "time". This requires giving constraint equations which must be satisfied by the original hyperslice. It also involves some "choice of gauge"; specifically, choices about how the coordinate system used to describe the hyperslice geometry evolves.

Wheeler's geometrodynamics[edit]

Wheeler wanted to reduce physics to geometry in an even more fundamental way than the ADM reformulation of general relativity with a dynamic geometry whose curvature changes with time. It attempts to realize three concepts:

  • mass without mass
  • charge without charge
  • field without field.

He wanted to lay the foundation for quantum gravity and unify gravitation with electromagnetism (the strong and weak interactions were not yet sufficiently well understood in 1960 to be included).

Wheeler introduced the notion of geons, gravitational wave packets confined to a compact region of spacetime and held together by the gravitational attraction of the (gravitational) field energy of the wave itself. Wheeler was intrigued by the possibility that geons could affect test particles much like a massive object, hence mass without mass.

Wheeler was also much intrigued by the fact that the (nonspinning) point-mass solution of general relativity, the Schwarzschild vacuum, has the nature of a wormhole. Similarly, in the case of a charged particle, the geometry of the Reissner–Nordström electrovacuum solution suggests that the symmetry between electric (which "end" in charges) and magnetic field lines (which never end) could be restored if the electric field lines do not actually end but only go through a wormhole to some distant location or even another branch of the universe. George Rainich had shown decades earlier that one can obtain the electromagnetic field tensor from the electromagnetic contribution to the stress–energy tensor, which in general relativity is directly coupled to spacetime curvature; Wheeler and Misner developed this into the so-called already-unified field theory which partially unifies gravitation and electromagnetism, yielding charge without charge.

In the ADM reformulation of general relativity, Wheeler argued that the full Einstein field equation can be recovered once the momentum constraint can be derived, and suggested that this might follow from geometrical considerations alone, making general relativity something like a logical necessity. Specifically, curvature (the gravitational field) might arise as a kind of "averaging" over very complicated topological phenomena at very small scales, the so-called spacetime foam. This would realize geometrical intuition suggested by quantum gravity, or field without field.

These ideas captured the imagination of many physicists, even though Wheeler himself quickly dashed some of the early hopes for his program. In particular, spin 1/2 fermions proved difficult to handle. For this, one has to go to the Einsteinian Unified Field Theory of the Einstein–Maxwell–Dirac system, or more generally, the Einstein–Yang–Mills-Dirac-Higgs System.

Geometrodynamics also attracted attention from philosophers intrigued by the possibility of realizing some of Descartes' and Spinoza's ideas about the nature of space.

Modern notions of geometrodynamics[edit]

More recently, Christopher Isham, Jeremy Butterfield, and their students have continued to develop quantum geometrodynamics to take account of recent work toward a quantum theory of gravity and further developments in the very extensive mathematical theory of initial value formulations of general relativity. Some of Wheeler's original goals remain important for this work, particularly the hope of laying a solid foundation for quantum gravity. The philosophical program also continues to motivate several prominent contributors.

Topological ideas in the realm of gravity date back to Riemann, Clifford and Weyl and found a more concrete realization in the wormholes of Wheeler characterized by the Euler-Poincaré invariant. They result from attaching handles to black holes.

Observationally, Einstein's general relativity (GR) is rather well established for the solar system and double pulsars. However, in GR the metric plays a double role: Measuring distances in spacetime and serving as a gravitational potential for the Christoffel connection. This dichotomy seems to be one of the main obstacles for quantizing gravity. Arthur Stanley Eddington suggested already 1924 in his book 'The Mathematical Theory of Relativity' (2nd Edition) to regard the connection as the basic field and the metric merely as a derived concept.

Consequently, the primordial action in four dimensions should be constructed from a metric-free topological action such as the Pontrjagin invariant of the corresponding gauge connection. Similarly as in the Yang–Mills theory, a quantization can be achieved by amending the definition of curvature and the Bianchi identities via topological ghosts. In such a graded Cartan formalism, the nilpotency of the ghost operators is on par with the Poincaré lemma for the exterior derivative. Using a BRST antifield formalism with a duality gauge fixing, a consistent quantization in spaces of double dual curvature is obtained. The constraint imposes instanton type solutions on the curvature-squared 'Yang-Mielke theory' of gravity, proposed in its affine form already by Weyl 1919 and by Yang in 1974. However, these exact solutions exhibit a 'vacuum degeneracy'. One needs to modify the double duality of the curvature via scale breaking terms, in order to retain Einstein's equations with an induced cosmological constant of partially topological origin as the unique macroscopic 'background'.

Such scale breaking terms arise more naturally in a constraint formalism, the so-called BF scheme, in which the gauge curvature is denoted by F. In the case of gravity, it departs from the meta-linear group SL(5,R) in four dimensions, thus generalizing (Anti-)de Sitter gauge theories of gravity. After applying spontaneous symmetry breaking to the corresponding topological BF theory, again Einstein spaces emerge with a tiny cosmological constant related to the scale of symmetry breaking. Here the 'background' metric is induced via a Higgs-like mechanism. The finiteness of such a deformed topological scheme may convert into asymptotic safeness after quantization of the spontaneously broken model.


Further reading[edit]

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Geometrodynamics — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
281 videos foundNext > 

Geometrodynamics: The Nonlinear Dynamics of Curved Spacetime | Kip Thorne

Space-Time Theories Historical and Philosophical Contexts January 5-8, 2015 Morning Session: Quantum Gravity Kip Thorne , Caltech Geometrodynamics: The ...

Classical Physics as Geometry: Geometrodynamics

Magnetic "monopole" and helical geometrodynamics - Romanian Unified Theory

The Romanian Unified Theory confirmed. For the first time, many devices are inside of this theory and....outside of ...scientific knowledge! All of these can be ...

A strange coil in Helical Geometrodynamics theory. -1

This strange coil use Helical Geometrodynamics, Unified Theory in general relativity. It use Fundamental Code of helical interactions!

A strange coil in Helical Geometrodynamics theory -2

This strange coil use Helical Geometrodynamics, Unified Theory in general relativity. It use Fundamental Code of helical interactions!

Helical water & unified field theory, helical geometrodynamics.

Helical flow circuit of water produce an ....inductive electric field. Same a helical electric circuit flow produce a ....magnetic inductive field.(UNIFIED ...

Universal Law of Attraction in Helical Geometrodynamics

Universal Law of Attraction in Helical Geometrodynamics, Unified Theory in General Relativity.

A strange coil in Helical Geometrodynamics theory. -3

This strange coil use Helical Geometrodynamics, Unified Theory in general relativity. It use Fundamental Code of helical interactions!

Geometrodynamics Meaning

Video shows what geometrodynamics means. Any of several reformulations of general relativity that attempt to describe spacetime and associated phenomena ...

What does geometrodynamics mean?

What does geometrodynamics mean? A spoken definition of geometrodynamics. Intro Sound: Typewriter - Tamskp Licensed under CC:BA 3.0 Outro Music: ...

281 videos foundNext > 

15 news items

Thu, 21 May 2015 23:56:15 -0700

Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet. Phys Rev Lett 2006; 96: 073903. | Article | PubMed | CAS |; Bliokh KY, Niv A, Kleiner V, Hasman E. Geometrodynamics ...
The Daily Galaxy (blog)
Sat, 07 Mar 2015 07:27:53 -0800

John Archibald Wheeler, the father of quantum physics, succinctly summarized “geometrodynamics,” his preferred name for the theory of general relativity : “Spacetime tells matter how to move; matter tells spacetime how to curve.” Cosmologists observe ...

Scientific American

Scientific American
Tue, 23 Sep 2014 09:27:51 -0700

Big Bang and the resultant universe's birth pangs that followed with Geometrodynamics , a confusion of celestial bodies classical symmetrization and a cascade's of natural process that followed, gave rise to magnetic monopole's, a hypothetical ...


Sun, 01 Feb 2015 19:44:56 -0800

Applying quantum principles to general relativity (geometrodynamics) suggests that at lengths shorter than the Planck length (10**-35 m), the nature of space-time fluctuates, and therefore no meaning can be ascribed to a length shorter than the Planck ...
Huffington Post (blog)
Fri, 17 Jan 2014 17:06:33 -0800

Likewise, physicists like John Wheeler, and more recently Christopher Isham, have attempted, in the theory of geometrodynamics, to define all matter in terms of perturbations in the fabric of space. Thus, even though spontaneous creation of complex ...
Scientific American (blog)
Fri, 04 Jan 2013 07:17:31 -0800

Mastermind book jacket “It is surprising that people do not believe that there is imagination in science,” Nobel-winning physicist Richard Feynman once told an audience. Not only is that view patently false, but “it is a very interesting kind of ...
Scientific American (blog)
Thu, 02 Aug 2012 11:29:47 -0700

The strong gravitational wave signature expected from merging black holes, in comparison, would carry a wealth of information both about the objects involved and about their cataclysmic interaction—the geometrodynamics, or “stormy behavior,” as Thorne ...
Science 2.0
Wed, 23 Jan 2013 04:01:37 -0800

A century ago, “past” and “future”, previously strictly apart, mixed up and merged. Temporal terminology improved. Today, not actualized quantum states, that is merely “possible” alternatives, objectively “exist” (are real) when they interfere. Again ...

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight