digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Generalized Pareto distribution
Parameters \mu \in (-\infty,\infty) \, location (real)

\sigma \in (0,\infty)    \, scale (real)
\xi\in (-\infty,\infty)  \, shape (real)

Support x \geqslant \mu\,\;(\xi \geqslant 0)

\mu \leqslant x \leqslant \mu-\sigma/\xi\,\;(\xi < 0)

pdf \frac{1}{\sigma}(1 + \xi z )^{-(1/\xi +1)}

where z=\frac{x-\mu}{\sigma}

CDF 1-(1+\xi z)^{-1/\xi} \,
Mean \mu + \frac{\sigma}{1-\xi}\, \; (\xi < 1)
Median \mu + \frac{\sigma( 2^{\xi} -1)}{\xi}
Variance \frac{\sigma^2}{(1-\xi)^2(1-2\xi)}\, \; (\xi < 1/2)

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location \mu, scale \sigma, and shape \xi.[1][2] Sometimes it is specified by only scale and shape[3] and sometimes only by its shape parameter. Some references give the shape parameter as  \kappa =  - \xi \,.[4]

Definition[edit]

The standard cumulative distribution function of the GPD is defined by[5]

F_{\xi}(z) = \begin{cases}
1 - \left(1+ \xi z\right)^{-1/\xi} & \text{for }\xi \neq 0, \\
1 - e^{-z} & \text{for }\xi = 0.
\end{cases}

where the support is  z \geq 0 for  \xi \geq 0 \, and  0 \leq z \leq - 1 /\xi for  \xi < 0 \,.


f_{\xi}(z) = \begin{cases}
(\xi  z+1)^{-\frac{\xi +1}{\xi }} & \text{for }\xi \neq 0, \\
e^{-z} & \text{for }\xi = 0.
\end{cases}

Differential equation



\left\{(\xi  z+1) f_{\xi}'(z)+(\xi +1) f_{\xi}(z)=0,f_{\xi}(0)=1\right\}

Characterization[edit]

The related location-scale family of distributions is obtained by replacing the argument z by \frac{x-\mu}{\sigma} and adjusting the support accordingly: The cumulative distribution function is

F_{(\xi,\mu,\sigma)}(x) = \begin{cases}
1 - \left(1+ \frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi} & \text{for }\xi \neq 0, \\
1 - \exp \left(-\frac{x-\mu}{\sigma}\right) & \text{for }\xi = 0.
\end{cases}

for  x \geqslant \mu when  \xi \geqslant 0 \,, and  \mu \leqslant x \leqslant \mu - \sigma /\xi when  \xi < 0 \,, where \mu\in\mathbb R, \sigma>0 \,, and \xi\in\mathbb R.

The probability density function is

f_{(\xi,\mu,\sigma)}(x) = \frac{1}{\sigma}\left(1 + \frac{\xi (x-\mu)}{\sigma}\right)^{\left(-\frac{1}{\xi} - 1\right)},

or equivalently

f_{(\xi,\mu,\sigma)}(x) = \frac{\sigma^{\frac{1}{\xi}}}{\left(\sigma + \xi (x-\mu)\right)^{\frac{1}{\xi}+1}},

again, for  x \geqslant \mu when  \xi \geqslant 0 \,, and  \mu \leqslant x \leqslant \mu - \sigma /\xi when  \xi < 0 \, .

Differential equation



\left\{f'(x) (-\mu  \xi +\sigma +\xi  x)+(\xi +1) f(x)=0,f(0)=\frac{\left(1-\frac{\mu  \xi
   }{\sigma }\right)^{-\frac{1}{\xi }-1}}{\sigma }\right\}

Special cases[edit]

Generating generalized Pareto random variables[edit]

If U is uniformly distributed on (0, 1], then

 X = \mu + \frac{\sigma (U^{-\xi}-1)}{\xi} \sim \mbox{GPD}(\mu, \sigma, \xi \neq 0)

and

 X = \mu - \sigma \ln(U) \sim \mbox{GPD}(\mu,\sigma,\xi =0).

Both formulas are obtained by inversion of the cdf.

In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.

With GNU R you can use the packages POT or evd with the "rgpd" command (see for exact usage: http://rss.acs.unt.edu/Rdoc/library/POT/html/simGPD.html)

See also[edit]

Notes[edit]

  1. ^ Coles, Stuart (2001-12-12). An Introduction to Statistical Modeling of Extreme Values. Springer. p. 75. ISBN 9781852334598. 
  2. ^ Dargahi-Noubary, G. R. (1989). "On tail estimation: An improved method". Mathematical Geology 21 (8): 829–842. doi:10.1007/BF00894450.  edit
  3. ^ Hosking, J. R. M.; Wallis, J. R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution". Technometrics 29 (3): 339–349. doi:10.2307/1269343.  edit
  4. ^ Davison, A. C. (1984-09-30). "Modelling Excesses over High Thresholds, with an Application". In de Oliveira, J. Tiago. Statistical Extremes and Applications. Kluwer. p. 462. ISBN 9789027718044. 
  5. ^ Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas (1997-01-01). Modelling extremal events for insurance and finance. p. 162. ISBN 9783540609315. 

References[edit]

  • N. L. Johnson, S. Kotz, and N. Balakrishnan (1994). Continuous Univariate Distributions Volume 1, second edition. New York: Wiley. ISBN 0-471-58495-9.  Chapter 20, Section 12: Generalized Pareto Distributions.
  • Arnold, B. C. and Laguna, L. (1977). On generalized Pareto distributions with applications to income data. Ames, Iowa: Iowa State University, Department of Economics. 

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Generalized_Pareto_distribution — Please support Wikipedia.
A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
9 videos found

Generalised Pareto distribution for extreme value modelling in electromagnetic compatibility

DOTNET PROJECTS,2013 DOTNET PROJECTS,IEEE 2013 PROJECTS,2013 IEEE PROJECTS,IT PROJECTS,ACADEMIC PROJECTS,ENGINEERING PROJECTS,CS PROJECTS,JAVA PROJECTS,APPLI...

How You Can Make a Histogram and Pareto Chart in Excel

This Video Shows Step-By-Step, Easy-To-Follow Instructions On How To Make a Histogram in Excel. You WIll Learn To Make Both Styles of Histograms. These Two S...

How To Fit Distributions Using EasyFit

Download EasyFit from www.mathwave.com and fit distributions to your data in seconds. Supported distributions: Bernoulli, Beta, Binomial, Burr, Cauchy, Chi-S...

Learn JMP 11 (Part 5) - Generalized Regression in JMP Pro

See how to fit generalized linear models using regularized or penalized regression; minimize the effects of multicollinearity; use Ridge, Lasso, and Elastic ...

Distributed Cooperative Caching in Social Wireless Networks

Distributed Cooperative Caching in Social Wireless Networks +91-9994232214,8144199666, ieeeprojectchennai@gmail.com, www.chennaibox.com , www.ieee-projects-c...

3900income Matrix Builder

http://www.3900income.com/affiliates/jrox.php?uid=ajchapmn_1 Alan Chapman here, from my success on the Global Domains International Leaderboard I am building...

some comments on extreme value theory

I futher elucidate the idea of what longitudinal analysis tells us based on an article I read from BBC Knowledge magazine about extreme value theory. This is...

Tail Conditional Expectations

http://demonstrations.wolfram.com/TailConditionalExpectations/ The Wolfram Demonstrations Project contains thousands of free interactive visualizations, with...

Carme 2011 - Advances in visualizing categorical data - Michael Friendly

Talk given by Michael Friendly on the occasion of the CARME 2011 organized by the Applied Mathematic Departement.

 
9 videos found

1 news items

 
Insurance News Net (press release)
Mon, 24 Mar 2014 08:46:13 -0700

Other distributions with a heavy tail (e.g., mixed exponential distribution and hybrid expo- nential and generalized Pareto distribution) can also be used to better represent the ensemble spread ( C. Li et al. 2012; Z. Li et al. 2013). This is one of ...
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Generalized Pareto distribution

You can talk about Generalized Pareto distribution with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!