digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

This article is about a particular family of continuous distributions referred to as the generalized Pareto distribution. For the hierarchy of generalized Pareto distributions, see Pareto distribution.
Generalized Pareto distribution
Probability density function
PDF Generalized Pareto.svg
PDF for \mu=0 and different values of \sigma and \xi
Parameters

\mu \in (-\infty,\infty) \, location (real)
\sigma \in (0,\infty)    \, scale (real)

\xi\in (-\infty,\infty)  \, shape (real)
Support

x \geqslant \mu\,\;(\xi \geqslant 0)

\mu \leqslant x \leqslant \mu-\sigma/\xi\,\;(\xi < 0)
PDF

\frac{1}{\sigma}(1 + \xi z )^{-(1/\xi +1)}

where z=\frac{x-\mu}{\sigma}
CDF 1-(1+\xi z)^{-1/\xi} \,
Mean \mu + \frac{\sigma}{1-\xi}\, \; (\xi < 1)
Median \mu + \frac{\sigma( 2^{\xi} -1)}{\xi}
Mode
Variance \frac{\sigma^2}{(1-\xi)^2(1-2\xi)}\, \; (\xi < 1/2)
Skewness \frac{2(1+\xi)\sqrt(1-{2\xi})}{(1-3\xi)}\,\;(\xi<1/3)
Ex. kurtosis \frac{3(1-2\xi)(2\xi^2+\xi+3)}{(1-3\xi)(1-4\xi)}-3\,\;(\xi<1/4)
Entropy
MGF e^{\theta\mu}\,\sum_{j=0}^\infty \left[\frac{(\theta\sigma)^j}{\pi_{k=0}^j(1-k\xi)}\right], \;(k\xi<1)
CF e^{it\mu}\,\sum_{j=0}^\infty \left[\frac{(it\sigma)^j}{\pi_{k=0}^j(1-k\xi)}\right], \;(k\xi<1)

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location \mu, scale \sigma, and shape \xi.[1][2] Sometimes it is specified by only scale and shape[3] and sometimes only by its shape parameter. Some references give the shape parameter as  \kappa =  - \xi \,.[4]

Definition[edit]

The standard cumulative distribution function (cdf) of the GPD is defined by[5]

F_{\xi}(z) = \begin{cases}
1 - \left(1+ \xi z\right)^{-1/\xi} & \text{for }\xi \neq 0, \\
1 - e^{-z} & \text{for }\xi = 0.
\end{cases}

where the support is  z \geq 0 for  \xi \geq 0 and  0 \leq z \leq - 1 /\xi for  \xi < 0.

f_{\xi}(z) = \begin{cases}
(\xi  z+1)^{-\frac{\xi +1}{\xi }} & \text{for }\xi \neq 0, \\
e^{-z} & \text{for }\xi = 0.
\end{cases}

Differential equation[edit]

The cdf of the GPD is a solution of the following differential equation:

\left\{\begin{array}{l}
(\xi  z+1) f_{\xi}'(z)+(\xi +1) f_{\xi}(z)=0, \\
f_{\xi}(0)=1
\end{array}\right\}

Characterization[edit]

The related location-scale family of distributions is obtained by replacing the argument z by \frac{x-\mu}{\sigma} and adjusting the support accordingly: The cumulative distribution function is

F_{(\xi,\mu,\sigma)}(x) = \begin{cases}
1 - \left(1+ \frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi} & \text{for }\xi \neq 0, \\
1 - \exp \left(-\frac{x-\mu}{\sigma}\right) & \text{for }\xi = 0.
\end{cases}

for  x \geqslant \mu when  \xi \geqslant 0 \,, and  \mu \leqslant x \leqslant \mu - \sigma /\xi when  \xi < 0, where \mu\in\mathbb R, \sigma>0, and \xi\in\mathbb R.

The probability density function (pdf) is

f_{(\xi,\mu,\sigma)}(x) = \frac{1}{\sigma}\left(1 + \frac{\xi (x-\mu)}{\sigma}\right)^{\left(-\frac{1}{\xi} - 1\right)},

or equivalently

f_{(\xi,\mu,\sigma)}(x) = \frac{\sigma^{\frac{1}{\xi}}}{\left(\sigma + \xi (x-\mu)\right)^{\frac{1}{\xi}+1}},

again, for  x \geqslant \mu when  \xi \geqslant 0, and  \mu \leqslant x \leqslant \mu - \sigma /\xi when  \xi < 0.

The pdf is a solution of the following differential equation:

\left\{\begin{array}{l}
f'(x) (-\mu \xi +\sigma+\xi x)+(\xi+1) f(x)=0, \\
f(0)=\frac{\left(1-\frac{\mu \xi}{\sigma}\right)^{-\frac{1}{\xi }-1}}{\sigma}
\end{array}\right\}

Characteristic and Moment Generating Functions[edit]

The characteristic and moment generating functions are derived and skewness and kurtosis are obtained from MGF by Muraleedharan and Guedes Soares[6]

Special cases[edit]

Generating generalized Pareto random variables[edit]

If U is uniformly distributed on (0, 1], then

 X = \mu + \frac{\sigma (U^{-\xi}-1)}{\xi} \sim \mbox{GPD}(\mu, \sigma, \xi \neq 0)

and

 X = \mu - \sigma \ln(U) \sim \mbox{GPD}(\mu,\sigma,\xi =0).

Both formulas are obtained by inversion of the cdf.

In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.

With GNU R you can use the packages POT or evd with the "rgpd" command (see for exact usage: http://rss.acs.unt.edu/Rdoc/library/POT/html/simGPD.html)

See also[edit]

Notes[edit]

  1. ^ Coles, Stuart (2001-12-12). An Introduction to Statistical Modeling of Extreme Values. Springer. p. 75. ISBN 9781852334598. 
  2. ^ Dargahi-Noubary, G. R. (1989). "On tail estimation: An improved method". Mathematical Geology 21 (8): 829–842. doi:10.1007/BF00894450. 
  3. ^ Hosking, J. R. M.; Wallis, J. R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution". Technometrics 29 (3): 339–349. doi:10.2307/1269343. 
  4. ^ Davison, A. C. (1984-09-30). "Modelling Excesses over High Thresholds, with an Application". In de Oliveira, J. Tiago. Statistical Extremes and Applications. Kluwer. p. 462. ISBN 9789027718044. 
  5. ^ Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas (1997-01-01). Modelling extremal events for insurance and finance. p. 162. ISBN 9783540609315. 
  6. ^ Muraleedharan, G.; C, Guedes Soares (2014). "Characteristic and Moment Generating Functions of Generalised Pareto(GP3) and Weibull Distributions". Journal of Scientific Research and Reports 3 (14): 1861–1874. doi:10.9734/JSRR/2014/10087. 

References[edit]

  • N. L. Johnson, S. Kotz, and N. Balakrishnan (1994). Continuous Univariate Distributions Volume 1, second edition. New York: Wiley. ISBN 0-471-58495-9.  Chapter 20, Section 12: Generalized Pareto Distributions.
  • Arnold, B. C. and Laguna, L. (1977). On generalized Pareto distributions with applications to income data. Ames, Iowa: Iowa State University, Department of Economics. 

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Generalized_Pareto_distribution — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
90 videos foundNext > 

Generalized Pareto distribution

In statistics, the generalized Pareto distribution is a family of continuous probability distributions. It is often used to model the tails of another distribution.

Extreme Value Theory (EVT) - Intro

Extreme value theory (EVT) aims to remedy a deficiency with value at risk (i.e., it gives no information about losses that breach the VaR) and glaring weakness of ...

Generalized Pareto Distributions, Image Statistics and Autofocusing in Automated Microscopy Reiner L

Extreme value theorem

More free lessons at: http://www.khanacademy.org/video?v=bZYTDst1MOo.

How To Fit Distributions Using EasyFit

Download EasyFit from www.mathwave.com and fit distributions to your data in seconds. Supported distributions: Bernoulli, Beta, Binomial, Burr, Cauchy, ...

The 80-20 Rule Explained (Pareto Principle)

The 80/20 rule or Pareto principle comes up a lot in economics and business. But why does this pattern emerge? I show why using a paper clip experiment.

Pareto distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power law probability distribution that is used in ...

Expressing the Dirac Equation as a Generalization of Maxwells Equations

Using the bijective transformations between the Dirac equation and the special case of the Maxwell-Cassano equations the Dirac equation is expressed as a ...

Generalized Extreme Value Distributions: Application in Financial Risk Management

http://demonstrations.wolfram.com/GeneralizedExtremeValueDistributionsApplicationInFinancialRi The Wolfram Demonstrations Project contains thousands of ...

3900income Matrix Builder

90 videos foundNext > 

2 news items

ValueWalk

ValueWalk
Sat, 19 Dec 2015 17:18:45 -0800

In our setup, the key input is the spread between value-at-risk (VaR) from a GARCH model with innovations following a generalized Pareto distribution (GPD), which is a distribution focusing on extreme risks, and a GARCH model with normally distributed ...
 
Insurance News Net
Thu, 02 Oct 2014 21:02:13 -0700

... randomprocess, the extreme behavior ismodeled by the rate yu 5 Pr(Y > u) of occurrence of observations which exceed some sufficiently high threshold u, and the size of these exceedances which is assumed to follow a generalized Pareto distribution ...
Loading

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight