digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

This article is about a particular family of continuous distributions referred to as the generalized Pareto distribution. For the hierarchy of generalized Pareto distributions, see Pareto distribution.
Generalized Pareto distribution
Parameters

\mu \in (-\infty,\infty) \, location (real)
\sigma \in (0,\infty)    \, scale (real)

\xi\in (-\infty,\infty)  \, shape (real)
Support

x \geqslant \mu\,\;(\xi \geqslant 0)

\mu \leqslant x \leqslant \mu-\sigma/\xi\,\;(\xi < 0)
PDF

\frac{1}{\sigma}(1 + \xi z )^{-(1/\xi +1)}

where z=\frac{x-\mu}{\sigma}
CDF 1-(1+\xi z)^{-1/\xi} \,
Mean \mu + \frac{\sigma}{1-\xi}\, \; (\xi < 1)
Median \mu + \frac{\sigma( 2^{\xi} -1)}{\xi}
Mode
Variance \frac{\sigma^2}{(1-\xi)^2(1-2\xi)}\, \; (\xi < 1/2)
Skewness \frac{2(1+\xi)\sqrt(1-{2\xi})}{(1-3\xi)}\,\;(\xi<1/3)
Ex. kurtosis \frac{3(1-2\xi)(2\xi^2+\xi+3)}{(1-3\xi)(1-4\xi)}-3\,\;(\xi<1/4)
Entropy
MGF e^{\theta\mu}\,\sum_{j=0}^\infty \left[\frac{(\theta\sigma)^j}{\pi_{k=0}^j(1-k\xi)}\right], \;(k\xi<1)
CF e^{it\mu}\,\sum_{j=0}^\infty \left[\frac{(it\sigma)^j}{\pi_{k=0}^j(1-k\xi)}\right], \;(k\xi<1)

In statistics, the generalized Pareto distribution (GPD) is a family of continuous probability distributions. It is often used to model the tails of another distribution. It is specified by three parameters: location \mu, scale \sigma, and shape \xi.[1][2] Sometimes it is specified by only scale and shape[3] and sometimes only by its shape parameter. Some references give the shape parameter as  \kappa =  - \xi \,.[4]

Definition[edit]

The standard cumulative distribution function (cdf) of the GPD is defined by[5]

F_{\xi}(z) = \begin{cases}
1 - \left(1+ \xi z\right)^{-1/\xi} & \text{for }\xi \neq 0, \\
1 - e^{-z} & \text{for }\xi = 0.
\end{cases}

where the support is  z \geq 0 for  \xi \geq 0 and  0 \leq z \leq - 1 /\xi for  \xi < 0.

f_{\xi}(z) = \begin{cases}
(\xi  z+1)^{-\frac{\xi +1}{\xi }} & \text{for }\xi \neq 0, \\
e^{-z} & \text{for }\xi = 0.
\end{cases}

Differential equation[edit]

The cdf of the GPD is a solution of the following differential equation:

\left\{\begin{array}{l}
(\xi  z+1) f_{\xi}'(z)+(\xi +1) f_{\xi}(z)=0, \\
f_{\xi}(0)=1
\end{array}\right\}

Characterization[edit]

The related location-scale family of distributions is obtained by replacing the argument z by \frac{x-\mu}{\sigma} and adjusting the support accordingly: The cumulative distribution function is

F_{(\xi,\mu,\sigma)}(x) = \begin{cases}
1 - \left(1+ \frac{\xi(x-\mu)}{\sigma}\right)^{-1/\xi} & \text{for }\xi \neq 0, \\
1 - \exp \left(-\frac{x-\mu}{\sigma}\right) & \text{for }\xi = 0.
\end{cases}

for  x \geqslant \mu when  \xi \geqslant 0 \,, and  \mu \leqslant x \leqslant \mu - \sigma /\xi when  \xi < 0, where \mu\in\mathbb R, \sigma>0, and \xi\in\mathbb R.

The probability density function (pdf) is

f_{(\xi,\mu,\sigma)}(x) = \frac{1}{\sigma}\left(1 + \frac{\xi (x-\mu)}{\sigma}\right)^{\left(-\frac{1}{\xi} - 1\right)},

or equivalently

f_{(\xi,\mu,\sigma)}(x) = \frac{\sigma^{\frac{1}{\xi}}}{\left(\sigma + \xi (x-\mu)\right)^{\frac{1}{\xi}+1}},

again, for  x \geqslant \mu when  \xi \geqslant 0, and  \mu \leqslant x \leqslant \mu - \sigma /\xi when  \xi < 0.

The pdf is a solution of the following differential equation:

\left\{\begin{array}{l}
f'(x) (-\mu \xi +\sigma+\xi x)+(\xi+1) f(x)=0, \\
f(0)=\frac{\left(1-\frac{\mu \xi}{\sigma}\right)^{-\frac{1}{\xi }-1}}{\sigma}
\end{array}\right\}

Characteristic and Moment Generating Functions[edit]

The characteristic and moment generating functions are derived and skewness and kurtosis are obtained from MGF by Muraleedharan and Guedes Soares[6]

Special cases[edit]

Generating generalized Pareto random variables[edit]

If U is uniformly distributed on (0, 1], then

 X = \mu + \frac{\sigma (U^{-\xi}-1)}{\xi} \sim \mbox{GPD}(\mu, \sigma, \xi \neq 0)

and

 X = \mu - \sigma \ln(U) \sim \mbox{GPD}(\mu,\sigma,\xi =0).

Both formulas are obtained by inversion of the cdf.

In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers.

With GNU R you can use the packages POT or evd with the "rgpd" command (see for exact usage: http://rss.acs.unt.edu/Rdoc/library/POT/html/simGPD.html)

See also[edit]

Notes[edit]

  1. ^ Coles, Stuart (2001-12-12). An Introduction to Statistical Modeling of Extreme Values. Springer. p. 75. ISBN 9781852334598. 
  2. ^ Dargahi-Noubary, G. R. (1989). "On tail estimation: An improved method". Mathematical Geology 21 (8): 829–842. doi:10.1007/BF00894450.  edit
  3. ^ Hosking, J. R. M.; Wallis, J. R. (1987). "Parameter and Quantile Estimation for the Generalized Pareto Distribution". Technometrics 29 (3): 339–349. doi:10.2307/1269343.  edit
  4. ^ Davison, A. C. (1984-09-30). "Modelling Excesses over High Thresholds, with an Application". In de Oliveira, J. Tiago. Statistical Extremes and Applications. Kluwer. p. 462. ISBN 9789027718044. 
  5. ^ Embrechts, Paul; Klüppelberg, Claudia; Mikosch, Thomas (1997-01-01). Modelling extremal events for insurance and finance. p. 162. ISBN 9783540609315. 
  6. ^ Muraleedharan, G.; C, Guedes Soares (2014). "Characteristic and Moment Generating Functions of Generalised Pareto(GP3) and Weibull Distributions". Journal of Scientific Research and Reports 3 (14): 1861–1874. doi:10.9734/JSRR/2014/10087. 

References[edit]

  • N. L. Johnson, S. Kotz, and N. Balakrishnan (1994). Continuous Univariate Distributions Volume 1, second edition. New York: Wiley. ISBN 0-471-58495-9.  Chapter 20, Section 12: Generalized Pareto Distributions.
  • Arnold, B. C. and Laguna, L. (1977). On generalized Pareto distributions with applications to income data. Ames, Iowa: Iowa State University, Department of Economics. 

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Generalized_Pareto_distribution — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
53 videos foundNext > 

https://youtube.com/devicesupport

Extreme Value Theory (EVT) - Intro

Extreme value theory (EVT) aims to remedy a deficiency with value at risk (i.e., it gives no information about losses that breach the VaR) and glaring weakness of delta normal value at risk...

The 80-20 Rule Explained (Pareto Principle)

Check out my book "The Joy of Game Theory" (nearly 5 stars from 15 reviews on Amazon) http://amzn.to/1uQvA20 Get all of my books on math/game theory: http://goo.gl/BDlEkB Support us at Patreon...

How To Fit Distributions Using EasyFit

Download EasyFit from www.mathwave.com and fit distributions to your data in seconds. Supported distributions: Bernoulli, Beta, Binomial, Burr, Cauchy, Chi-Squared, Dagum, Discrete Uniform,...

All About - Pareto distribution

What is Pareto distribution? A documentary report all about Pareto distribution for homework/assignment. The Pareto distribution, named after the Italian civil engineer, economist, and...

Pareto distribution

The Pareto distribution, named after the Italian civil engineer, economist, and sociologist Vilfredo Pareto, is a power law probability distribution that is used in description of social, scientifi...

abco automation and the Pareto curve for Distribution Centers

VP of Sales at abco automation, Cory Flemings, explains how the Pareto Curve can help you realize huge efficiencies in your distribution center.

Generalized Extreme Value Distributions: Application in Financial Risk Management

http://demonstrations.wolfram.com/GeneralizedExtremeValueDistributionsApplicationInFinancialRi The Wolfram Demonstrations Project contains thousands of free interactive visualizations, with...

All About - Pareto distribution (Extended)

What is Pareto distribution? A documentary report all about Pareto distribution for the blind and visually impaired or for homework/assignment. The Pareto distribution, named after the...

Expressing the Dirac Equation as a Generalization of Maxwells Equations

Using the bijective transformations between the Dirac equation and the special case of the Maxwell-Cassano equations the Dirac equation is expressed as a generalization of Maxwell's equations,...

53 videos foundNext > 

4 news items

 
Risk.net
Tue, 30 Sep 2014 06:41:15 -0700

Welcome to the third issue of the ninth volume of The Journal of Operational Risk. It is encouraging to see operational risk data programs starting to show some progress and maturity. In conversations I have had with people in the industry, I have ...
 
Risk.net
Mon, 30 Jun 2014 08:32:56 -0700

Using that approach, a generalized Pareto distribution asymptotically describes data in excess of a certain threshold. Consequently, establishing a mechanism to estimate this threshold is of major relevance. Current methods to estimate the data ...
 
Risk.net
Thu, 27 Jun 2013 04:30:45 -0700

In our forum paper, "Alternative approaches to generalized Pareto distribution shape parameter estimation through expert opinions", Claudio Andreatta and Diego Mazza introduce methods for the estimation of the shape parameter of the generalized Pareto ...
 
Risk.net
Thu, 29 Mar 2012 06:03:24 -0700

In the paper "Fitting the generalized Pareto distribution to commercial fire loss severity: evidence from Taiwan", Wo-Chiang Lee proposes the use of fire loss data to help better evaluate different common parametric approaches for data-driven tail loss ...
Loading

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight