digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

For other uses, see Flywheel (disambiguation).
An industrial flywheel.

A flywheel is a rotating mechanical device that is used to store rotational energy. Flywheels have a significant moment of inertia and thus resist changes in rotational speed. The amount of energy stored in a flywheel is proportional to the square of its rotational speed. Energy is transferred to a flywheel by applying torque to it, thereby increasing its rotational speed, and hence its stored energy. Conversely, a flywheel releases stored energy by applying torque to a mechanical load, thereby decreasing its rotational speed.

Common uses of a flywheel include:

  • Providing continuous energy when the energy source is discontinuous. For example, flywheels are used in reciprocating engines because the energy source, torque from the engine, is intermittent.
  • Delivering energy at rates beyond the ability of a continuous energy source. This is achieved by collecting energy in the flywheel over time and then releasing the energy quickly, at rates that exceed the abilities of the energy source.
  • Controlling the orientation of a mechanical system. In such applications, the angular momentum of a flywheel is purposely transferred to a load when energy is transferred to or from the flywheel.

Flywheels are typically made of steel and rotate on conventional bearings; these are generally limited to a revolution rate of a few thousand RPM.[1] Some modern flywheels are made of carbon fiber materials and employ magnetic bearings, enabling them to revolve at speeds up to 60,000 RPM.[2]

Carbon-composite flywheel batteries have recently been manufactured and are proving to be viable in real-world tests on mainstream cars. Additionally, their disposal is more eco-friendly.[3]

Applications[edit]

A Landini tractor with exposed flywheel.

Flywheels are often used to provide continuous energy in systems where the energy source is not continuous. In such cases, the flywheel stores energy when torque is applied by the energy source, and it releases stored energy when the energy source is not applying torque to it. For example, a flywheel is used to maintain constant angular velocity of the crankshaft in a reciprocating engine. In this case, the flywheel—which is mounted on the crankshaft—stores energy when torque is exerted on it by a firing piston, and it releases energy to its mechanical loads when no piston is exerting torque on it. Other examples of this are friction motors, which use flywheel energy to power devices such as toy cars.

Modern automobile engine flywheel

A flywheel may also be used to supply intermittent pulses of energy at transfer rates that exceed the abilities of its energy source, or when such pulses would disrupt the energy supply (e.g., public electric network). This is achieved by accumulating stored energy in the flywheel over a period of time, at a rate that is compatible with the energy source, and then releasing that energy at a much higher rate over a relatively short time. For example, flywheels are used in riveting machines to store energy from the motor and release it during the riveting operation.

The phenomenon of precession has to be considered when using flywheels in vehicles. A rotating flywheel responds to any momentum that tends to change the direction of its axis of rotation by a resulting precession rotation. A vehicle with a vertical-axis flywheel would experience a lateral momentum when passing the top of a hill or the bottom of a valley (roll momentum in response to a pitch change). Two counter-rotating flywheels may be needed to eliminate this effect. This effect is leveraged in reaction wheels, a type of flywheel employed in satellites in which the flywheel is used to orient the satellite's instruments without thruster rockets.

History[edit]

The principle of the flywheel is found in the Neolithic spindle and the potter's wheel.[4]

The flywheel as a general mechanical device for equalizing the speed of rotation is, according to the American medievalist Lynn White, recorded in the De diversibus artibus (On various arts) of the German artisan Theophilus Presbyter (ca. 1070–1125) who records applying the device in several of his machines.[4][5]

In the Industrial Revolution, James Watt contributed to the development of the flywheel in the steam engine, and his contemporary James Pickard used a flywheel combined with a crank to transform reciprocating into rotary motion.

Physics[edit]

A flywheel with variable moment of inertia, conceived by Leonardo da Vinci.

A flywheel is a spinning wheel or disc with a fixed axle so that rotation is only about one axis. Energy is stored in the rotor as kinetic energy, or more specifically, rotational energy:

  • E_k=\frac{1}{2} I \omega^2

Where:

  • ω is the angular velocity, and
  •  I is the moment of inertia of the mass about the center of rotation. The moment of inertia is the measure of resistance to torque applied on a spinning object (i.e. the higher the moment of inertia, the slower it will spin when a given force is applied).
  • The moment of inertia for a solid cylinder is I = \frac{1}{2} mr^2,
  • for a thin-walled empty cylinder is I = m r^2,
  • and for a thick-walled empty cylinder is I = \frac{1}{2} m({r_\mathrm{external}}^2 + {r_\mathrm{internal}}^2) ,[6]

Where m denotes mass, and r denotes a radius.

When calculating with SI units, the standards would be for mass, kilograms; for radius, meters; and for angular velocity, radians per second. The resulting answer would be in joules.

The amount of energy that can safely be stored in the rotor depends on the point at which the rotor will warp or shatter. The hoop stress on the rotor is a major consideration in the design of a flywheel energy storage system.

  •  \sigma_t = \rho r^2 \omega^2 \

Where:

  •  \sigma_t is the tensile stress on the rim of the cylinder
  •  \rho is the density of the cylinder
  •  r is the radius of the cylinder, and
  •  \omega is the angular velocity of the cylinder.

This formula can also be simplified using specific tensile strength and tangent velocity:

  •  \frac{\sigma_t}{\rho} = v^2

Where:

  •  \frac{\sigma_t}{\rho} is the specific tensile strength of the material
  •  v is the tangent velocity of the rim.

Table of energy storage traits[edit]

Flywheel purpose, type Geometric shape factor (k)
(unitless – varies with shape)
Mass
(kg)
Diameter
(cm)
Angular velocity
(rpm)
Energy stored
(MJ)
Energy stored
(kWh)
Small battery 0.5 100 60 20,000 9.8 2.7
Regenerative braking in trains 0.5 3000 50 8,000 33.0 9.1
Electric power backup[7] 0.5 600 50 30,000 92.0 26.0

[8][9][10][11]

High-energy materials[edit]

For a given flywheel design, the kinetic energy is proportional to the ratio of the hoop stress to the material density and to the mass:

  • E_k \varpropto \frac{\sigma_t}{\rho}m

\frac{\sigma_t}{\rho} could be called the specific tensile strength. The flywheel material with the highest specific tensile strength will yield the highest energy storage per unit mass. This is one reason why carbon fiber is a material of interest.

For a given design the stored energy is proportional to the hoop stress and the volume:

  • E_k \varpropto \sigma_tV

Rimmed[edit]

A rimmed flywheel has a rim, a hub, and spokes.[12] The structure of a rimmed flywheel is complex and, consequently, it may be difficult to compute its exact moment of inertia.[citation needed] A rimmed flywheel can be more easily analysed by applying various simplifications. For example:

  • Assume the spokes, shaft and hub have zero moments of inertia, and the flywheel's moment of inertia is from the rim alone.
  • The lumped moments of inertia of spokes, hub and shaft may be estimated as a percentage of the flywheel's moment of inertia, with the remainder from the rim, so that I_\mathrm{rim}=KI_\mathrm{flywheel}

For example, if the moments of inertia of hub, spokes and shaft are deemed negligible, and the rim's thickness is very small compared to its mean radius (R), the radius of rotation of the rim is equal to its mean radius and thus:

  • I_\mathrm{rim}=M_\mathrm{rim}R^2

See also[edit]

References[edit]

  1. ^ [1]; "Flywheels move from steam age technology to Formula 1"; Jon Stewart | 1 July 2012, retrieved 2012-07-03
  2. ^ [2], "Breakthrough in Ricardo Kinergy ‘second generation’ high-speed flywheel technology"; Press release date: 22 August 2011. retrieved 2012-07-03
  3. ^ http://www.popularmechanics.com/technology/engineering/news/10-tech-concepts-you-need-to-know-for-2012-2
  4. ^ a b Lynn White, Jr., "Theophilus Redivivus", Technology and Culture, Vol. 5, No. 2. (Spring, 1964), Review, pp. 224–233 (233)
  5. ^ Lynn White, Jr., "Medieval Engineering and the Sociology of Knowledge", The Pacific Historical Review, Vol. 44, No. 1. (Feb., 1975), pp. 1–21 (6)
  6. ^ [3] (page 10, accessed 1 Dec 2011, Moment of inertia tutorial
  7. ^ http://www.vyconenergy.com/pq/VDCtech.htm
  8. ^ "Flywheel Energy Calculator". Botlanta.org. 2004-01-07. Retrieved 2010-11-30. 
  9. ^ "energy buffers". Home.hccnet.nl. Retrieved 2010-11-30. 
  10. ^ "Message from the Chair | Department of Physics | University of Prince Edward Island". Upei.ca. Retrieved 2010-11-30. 
  11. ^ "Density of Steel". Hypertextbook.com. 1998-01-20. Retrieved 2010-11-30. 
  12. ^ Flywheel Rotor And Containment Technology Development, FY83. Livermore, Calif: Lawrence Livermore National Laboratory , 1983. pp. 1–2

External links[edit]



Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Flywheel — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
264392 videos foundNext > 

Guide Season 2- Flywheel Indoor Cycling- Episode 1 part 1 of 2

Want to join Indoor Cycling fitness classes but don't know where? Physique TV will take you to the Flywheel Fitness gym for Indoor Cycling classes in Dubai.

Flywheel - Explained

How does a flywheel work? What is a flywheel? This video looks at the importance of flywheels and their purpose within an engine setup. The larger the flywhe...

Flywheel Trailer

For more information on FLYWHEEL visit: http://www.flywheelthemovie.com.

How A Flywheel Works

Brief introduction to the energy storage flywheel.

Flywheel Outtakes

Outtakes and bloopers from the Flywheel DVD.

Flywheel Bicycle Demo.mov

Flywheel Bicycle by Maxwell von Stein. Courtesy the Cooper Union.

energy of a flywheel   はずみ車 2

rotational inertia powered car はずみ車の動力で走ります.

How flywheel works. ✔

This video shows a fly wheel, explains it. Similar and related topics of this video: How a flywheel works Engine fly wheel flywheel explained how to install ...

Flywheel Technology

THE CENTURIES-OLD FLYWHEEL IS FINDING NEW USES IN THE 21ST CENTURY. A NEW ENGLAND COMPANY has MODERNIZED THE TECHNOLOGY. NOW THEY'RE USING IT TO UPGRADE ...

How Flywheel Works? - Dragonfly Education

This video explain the whole concept of flywheel with the help of sewing machine as a example. The Video content is a copyright of Dragonfly Masterclass, an ...

264392 videos foundNext > 

583 news items

BostInno (blog)

BostInno (blog)
Fri, 10 Oct 2014 05:33:45 -0700

CE: Besides Barry's and Flywheel, what is your favorite way to stay fit? CL: It is so important to mix up a workout routine to keep muscles guessing, so I don't have just one favorite. Each week I get in the boxing ring with a trainer. I combine boxing ...

BostInno (blog)

BostInno (blog)
Wed, 08 Oct 2014 08:39:18 -0700

Flywheel Sports is a worldwide (yes, they even have a studio in Dubai) fitness facility that utilizes a 'Torq board' to create competition among riders. Each bike is equipped with a computer monitoring system that is wireless connected to large ...
 
Silicon Prairie News
Fri, 19 Sep 2014 10:08:08 -0700

Ruby Engineer, Flywheel (Omaha) – Flywheel is a premium WordPress hosting company, built specifically for designers, freelancers and creative agencies.This is a mid- to senior-level position, responsible for building out the Flywheel software ...
 
Hartford Courant
Tue, 07 Oct 2014 12:52:19 -0700

Iceage begins its fall tour in Philadelphia on Oct. 10, then moves through Baltimore and New York, before reaching the Flywheel Arts Collective in Easthampton, Mass. on Wednesday, Oct. 15. From there, the band travels south and west (their last U.S ...
 
Winston-Salem Journal
Thu, 18 Sep 2014 17:43:41 -0700

Flywheel, a provider of co-working space at 525@Vine in Wake Forest Innovation Quarter, is offering a series of Code Camps that will provide highly targeted, in-depth training opportunities for individuals of all experience lev-els. The instruction ...

WTVA

WTVA
Fri, 26 Sep 2014 13:48:45 -0700

HOUSTON, Miss. (WTVA) -- Engines and tractors are the stars of this show. The Houston and Mississippi Valley Flywheel Fall Festival is underway. The Joe Brigance Park is the setting for this event held in the spring and the fall for more than 30 years.
 
Innovation in Textiles
Tue, 30 Sep 2014 03:30:00 -0700

Bill Regan will be presenting a topic entitled Energy storage flywheel applications - how significant an opportunity is this for carbon fibre? on 9 October, the first day of the conference, as part of the session dedicated to planes, turbines and ...
 
PR Web (press release)
Thu, 16 Oct 2014 05:00:00 -0700

CallFire, Inc., the cloud-based text and voice platform that helps organizations communicate with their target audiences, today announced that its two billionth message has been sent by Flywheel, the on-demand taxi access app and CallFire customer.
Loading

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!