digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

For other uses, see Flywheel (disambiguation).
An industrial flywheel.

A flywheel is a rotating mechanical device that is used to store rotational energy. Flywheels have a significant moment of inertia and thus resist changes in rotational speed. The amount of energy stored in a flywheel is proportional to the square of its rotational speed. Energy is transferred to a flywheel by applying torque to it, thereby increasing its rotational speed, and hence its stored energy. Conversely, a flywheel releases stored energy by applying torque to a mechanical load, thereby decreasing the flywheel's rotational speed.

Common uses of a flywheel include:

  • Providing continuous energy when the energy source is discontinuous. For example, flywheels are used in reciprocating engines because the energy source, torque from the engine, is intermittent.
  • Delivering energy at rates beyond the ability of a continuous energy source. This is achieved by collecting energy in the flywheel over time and then releasing the energy quickly, at rates that exceed the abilities of the energy source.
  • Controlling the orientation of a mechanical system. In such applications, the angular momentum of a flywheel is purposely transferred to a load when energy is transferred to or from the flywheel.

Flywheels are typically made of steel and rotate on conventional bearings; these are generally limited to a revolution rate of a few thousand RPM.[1] Some modern flywheels are made of carbon fiber materials and employ magnetic bearings, enabling them to revolve at speeds up to 60,000 RPM.[2]

Carbon-composite flywheel batteries have recently been manufactured and are proving to be viable in real-world tests on mainstream cars. Additionally, their disposal is more eco-friendly.[3]

Applications[edit]

A Landini tractor with exposed flywheel.

Flywheels are often used to provide continuous energy in systems where the energy source is not continuous. In such cases, the flywheel stores energy when torque is applied by the energy source, and it releases stored energy when the energy source is not applying torque to it. For example, a flywheel is used to maintain constant angular velocity of the crankshaft in a reciprocating engine. In this case, the flywheel—which is mounted on the crankshaft—stores energy when torque is exerted on it by a firing piston, and it releases energy to its mechanical loads when no piston is exerting torque on it. Other examples of this are friction motors, which use flywheel energy to power devices such as toy cars.

Modern automobile engine flywheel

A flywheel may also be used to supply intermittent pulses of energy at transfer rates that exceed the abilities of its energy source, or when such pulses would disrupt the energy supply (e.g., public electric network). This is achieved by accumulating stored energy in the flywheel over a period of time, at a rate that is compatible with the energy source, and then releasing that energy at a much higher rate over a relatively short time. For example, flywheels are used in riveting machines to store energy from the motor and release it during the riveting operation.

The phenomenon of precession has to be considered when using flywheels in vehicles. A rotating flywheel responds to any momentum that tends to change the direction of its axis of rotation by a resulting precession rotation. A vehicle with a vertical-axis flywheel would experience a lateral momentum when passing the top of a hill or the bottom of a valley (roll momentum in response to a pitch change). Two counter-rotating flywheels may be needed to eliminate this effect. This effect is used in reaction wheels, a type of flywheel employed in satellites in which the flywheel is used to orient the satellite's instruments without thruster rockets.

History[edit]

The principle of the flywheel is found in the Neolithic spindle and the potter's wheel.[4]

The flywheel as a general mechanical device for equalizing the speed of rotation is, according to the American medievalist Lynn White, recorded in the De diversibus artibus (On various arts) of the German artisan Theophilus Presbyter (ca. 1070–1125) who records applying the device in several of his machines.[4][5]

In the Industrial Revolution, James Watt contributed to the development of the flywheel in the steam engine, and his contemporary James Pickard used a flywheel combined with a crank to transform reciprocating into rotary motion.

Physics[edit]

A flywheel with variable moment of inertia, conceived by Leonardo da Vinci.

A flywheel is a spinning wheel or disc with a fixed axle so that rotation is only about one axis. Energy is stored in the rotor as kinetic energy, or more specifically, rotational energy:

  • E_k=\frac{1}{2} I \omega^2

Where:

  • ω is the angular velocity, and
  •  I is the moment of inertia of the mass about the center of rotation. The moment of inertia is the measure of resistance to torque applied on a spinning object (i.e. the higher the moment of inertia, the slower it will spin when a given force is applied).
  • The moment of inertia for a solid cylinder is I = \frac{1}{2} mr^2,
  • for a thin-walled empty cylinder is I = m r^2,
  • and for a thick-walled empty cylinder is I = \frac{1}{2} m({r_\mathrm{external}}^2 + {r_\mathrm{internal}}^2) ,[6]

Where m denotes mass, and r denotes a radius.

When calculating with SI units, the standards would be for mass, kilograms; for radius, meters; and for angular velocity, radians per second. The resulting answer would be in joules.

The amount of energy that can safely be stored in the rotor depends on the point at which the rotor will warp or shatter. The hoop stress on the rotor is a major consideration in the design of a flywheel energy storage system.

  •  \sigma_t = \rho r^2 \omega^2 \

Where:

  •  \sigma_t is the tensile stress on the rim of the cylinder
  •  \rho is the density of the cylinder
  •  r is the radius of the cylinder, and
  •  \omega is the angular velocity of the cylinder.

This formula can also be simplified using specific tensile strength and tangent velocity:

  •  \frac{\sigma_t}{\rho} = v^2

Where:

  •  \frac{\sigma_t}{\rho} is the specific tensile strength of the material
  •  v is the tangent velocity of the rim.

Table of energy storage traits[edit]

Flywheel purpose, type Geometric shape factor (k)
(unitless – varies with shape)
Mass
(kg)
Diameter
(cm)
Angular velocity
(rpm)
Energy stored
(MJ)
Energy stored
(kWh)
Small battery 0.5 100 60 20,000 9.8 2.7
Regenerative braking in trains 0.5 3000 50 8,000 33.0 9.1
Electric power backup[7] 0.5 600 50 30,000 92.0 26.0

[8][9][10][11]

High-energy materials[edit]

For a given flywheel design, the kinetic energy is proportional to the ratio of the hoop stress to the material density and to the mass:

  • E_k \varpropto \frac{\sigma_t}{\rho}m

\frac{\sigma_t}{\rho} could be called the specific tensile strength. The flywheel material with the highest specific tensile strength will yield the highest energy storage per unit mass. This is one reason why carbon fiber is a material of interest.

For a given design the stored energy is proportional to the hoop stress and the volume:

  • E_k \varpropto \sigma_tV

Rimmed[edit]

A rimmed flywheel has a rim, a hub, and spokes.[12] The structure of a rimmed flywheel is complex and, consequently, it may be difficult to compute its exact moment of inertia.[citation needed] A rimmed flywheel can be more easily analysed by applying various simplifications. For example:

  • Assume the spokes, shaft and hub have zero moments of inertia, and the flywheel's moment of inertia is from the rim alone.
  • The lumped moments of inertia of spokes, hub and shaft may be estimated as a percentage of the flywheel's moment of inertia, with the remainder from the rim, so that I_\mathrm{rim}=KI_\mathrm{flywheel}

For example, if the moments of inertia of hub, spokes and shaft are deemed negligible, and the rim's thickness is very small compared to its mean radius (R), the radius of rotation of the rim is equal to its mean radius and thus:

  • I_\mathrm{rim}=M_\mathrm{rim}R^2

See also[edit]

References[edit]

  1. ^ [1]; "Flywheels move from steam age technology to Formula 1"; Jon Stewart | 1 July 2012, retrieved 2012-07-03
  2. ^ [2], "Breakthrough in Ricardo Kinergy ‘second generation’ high-speed flywheel technology"; Press release date: 22 August 2011. retrieved 2012-07-03
  3. ^ http://www.popularmechanics.com/technology/engineering/news/10-tech-concepts-you-need-to-know-for-2012-2
  4. ^ a b Lynn White, Jr., "Theophilus Redivivus", Technology and Culture, Vol. 5, No. 2. (Spring, 1964), Review, pp. 224–233 (233)
  5. ^ Lynn White, Jr., "Medieval Engineering and the Sociology of Knowledge", The Pacific Historical Review, Vol. 44, No. 1. (Feb., 1975), pp. 1–21 (6)
  6. ^ [3] (page 10, accessed 1 Dec 2011, Moment of inertia tutorial
  7. ^ http://www.vyconenergy.com/pq/VDCtech.htm
  8. ^ "Flywheel Energy Calculator". Botlanta.org. 2004-01-07. Retrieved 2010-11-30. 
  9. ^ "energy buffers". Home.hccnet.nl. Retrieved 2010-11-30. 
  10. ^ "Message from the Chair | Department of Physics | University of Prince Edward Island". Upei.ca. Retrieved 2010-11-30. 
  11. ^ "Density of Steel". Hypertextbook.com. 1998-01-20. Retrieved 2010-11-30. 
  12. ^ Flywheel Rotor And Containment Technology Development, FY83. Livermore, Calif: Lawrence Livermore National Laboratory , 1983. pp. 1–2

External links[edit]



Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Flywheel — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
225993 videos foundNext > 

Guide Season 2- Flywheel Indoor Cycling- Episode 1 part 1 of 2

Want to join Indoor Cycling fitness classes but don't know where? Physique TV will take you to the Flywheel Fitness gym for Indoor Cycling classes in Dubai.

Flywheel - Explained

How does a flywheel work? What is a flywheel? This video looks at the importance of flywheels and their purpose within an engine setup. The larger the flywhe...

Flywheel Trailer

For more information on FLYWHEEL visit: http://www.flywheelthemovie.com.

energy of a flywheel   はずみ車 2

rotational inertia powered car はずみ車の動力で走ります.

How A Flywheel Works

Brief introduction to the energy storage flywheel.

Ruth Zukerman Describes the Flywheel Sports Experience

Flywheel Technology

THE CENTURIES-OLD FLYWHEEL IS FINDING NEW USES IN THE 21ST CENTURY. A NEW ENGLAND COMPANY has MODERNIZED THE TECHNOLOGY. NOW THEY'RE USING IT TO UPGRADE ...

Flywheel Outtakes

Outtakes and bloopers from the Flywheel DVD.

Flywheel Bicycle Demo.mov

Flywheel Bicycle by Maxwell von Stein. Courtesy the Cooper Union.

The truth about Ed Leedskalnin's magnetic flywheel

What he was really doing with this generator.

225993 videos foundNext > 

15711 news items

GeekWire

GeekWire
Wed, 18 Feb 2015 09:02:42 -0800

Flywheel also announced today that it reached an agreement with San Francisco International Airport to legally pick up and drop off those that use its app. SFO officials approved the same for uberX, Lyft and Sidecar late last year. The airport also ...

BostInno

BostInno
Mon, 09 Feb 2015 12:53:08 -0800

If you're already part of a duo, Flywheel wants you to grab your 'plus-one' for a 45-minute 'Power Couple Ride.' The class begins at 11 a.m. on Saturday, Feb. 14 and will be taught by two of Flywheels top instructors, Meredith DeJesus and Colin Batty.

Re/code

Re/code
Mon, 23 Feb 2015 05:00:39 -0800

I have always loved the publishing business. It started in my teenage years in Denver, getting up at 4 am, snow or shine, to deliver newspapers to 250 doorsteps. Once the job was complete, the cycle started anew. The next-day edition was already in ...

CIO Today

CIO Today
Wed, 18 Feb 2015 16:00:00 -0800

The transformation dumps DeSoto Cab's Depression-era identity in favor of Flywheel, an app that helps traditional taxis compete against increasingly popular ride-hailing services such as Uber and Lyft. "We think we are pioneering the way taxi cabs need ...

Triad Business Journal

Triad Business Journal
Mon, 09 Feb 2015 03:09:47 -0800

21 at Flywheel Cowork coworking space in Wake Forest Innovation Quarter. Retail technology firm Inmar Inc., software company Small Footprint, staffing and consulting firm ettain group and Flywheel Cowork are sponsoring the day-long event at Flywheel, ...
 
Atlanta Journal Constitution (blog)
Wed, 04 Feb 2015 08:41:15 -0800

There is still time to take advantage of a promotion sponsored by Bella Bag and Flywheel Buckhead running through February 28th. Here's how it works: With the purchase of an unlimited Flywheel, Flybarre or Plus Unlimited membership at Flywheel ...

WRAL Tech Wire

WRAL Tech Wire
Fri, 20 Feb 2015 07:33:48 -0800

“We are excited to bring two industry leaders together to provide a unique and complete set of services that will benefit all healthcare stakeholders,” said David King, chair and CEO LabCorp. “Our complementary services and capabilities will enable us ...

Refinery29

Refinery29
Tue, 24 Feb 2015 13:22:30 -0800

Lawrence has reportedly been taking Flywheel classes at the Shops at Prudential Center. "She comes in after the lights go down, and sneaks out before they go on," one Flywheel regular told the magazine. The Kentucky native was also spied shopping at ...
Loading

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight