digplanet beta 1: Athena
Share digplanet:


Applied sciences






















Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (\lambda, \mu, \nu) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces, the ellipsoidal coordinate system is not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Basic formulae[edit]

The Cartesian coordinates (x, y, z) can be produced from the ellipsoidal coordinates ( \lambda, \mu, \nu ) by the equations

x^{2} = \frac{\left( a^{2} + \lambda \right) \left( a^{2} + \mu \right) \left( a^{2} + \nu \right)}{\left( a^{2} - b^{2}  \right) \left( a^{2} - c^{2} \right)}

y^{2} = \frac{\left( b^{2} + \lambda \right) \left( b^{2} + \mu \right) \left( b^{2} + \nu \right)}{\left( b^{2} - a^{2}  \right) \left( b^{2} - c^{2} \right)}

z^{2} = \frac{\left( c^{2} + \lambda \right) \left( c^{2} + \mu \right) \left( c^{2} + \nu \right)}{\left( c^{2} - b^{2}  \right) \left( c^{2} - a^{2} \right)}

where the following limits apply to the coordinates

- \lambda < c^{2} < - \mu < b^{2} < -\nu < a^{2}.

Consequently, surfaces of constant \lambda are ellipsoids

\frac{x^{2}}{a^{2} + \lambda} +  \frac{y^{2}}{b^{2} + \lambda} + \frac{z^{2}}{c^{2} + \lambda} = 1,

whereas surfaces of constant \mu are hyperboloids of one sheet

\frac{x^{2}}{a^{2} + \mu} +  \frac{y^{2}}{b^{2} + \mu} + \frac{z^{2}}{c^{2} + \mu} = 1,

because the last term in the lhs is negative, and surfaces of constant \nu are hyperboloids of two sheets

\frac{x^{2}}{a^{2} + \nu} +  \frac{y^{2}}{b^{2} + \nu} + \frac{z^{2}}{c^{2} + \nu} = 1

because the last two terms in the lhs are negative.

Scale factors and differential operators[edit]

For brevity in the equations below, we introduce a function

S(\sigma) \ \stackrel{\mathrm{def}}{=}\  \left( a^{2} + \sigma \right) \left( b^{2} + \sigma \right) \left( c^{2} + \sigma \right)

where \sigma can represent any of the three variables (\lambda, \mu, \nu ). Using this function, the scale factors can be written

h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \mu \right) \left( \lambda - \nu\right)}{S(\lambda)}}

h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda\right) \left( \mu - \nu\right)}{S(\mu)}}

h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \lambda\right) \left( \nu - \mu\right)}{S(\nu)}}

Hence, the infinitesimal volume element equals

dV = \frac{\left( \lambda - \mu \right) \left( \lambda - \nu \right) \left( \mu - \nu\right)}{8\sqrt{-S(\lambda) S(\mu) S(\nu)}} \  d\lambda d\mu d\nu

and the Laplacian is defined by

\nabla^{2} \Phi = 
\frac{4\sqrt{S(\lambda)}}{\left( \lambda - \mu \right) \left( \lambda - \nu\right)}
\frac{\partial}{\partial \lambda} \left[ \sqrt{S(\lambda)} \frac{\partial \Phi}{\partial \lambda} \right] \  +  \
\frac{4\sqrt{S(\mu)}}{\left( \mu - \lambda \right) \left( \mu - \nu\right)}
\frac{\partial}{\partial \mu} \left[ \sqrt{S(\mu)} \frac{\partial \Phi}{\partial \mu} \right] \  + \  
\frac{4\sqrt{S(\nu)}}{\left( \nu - \lambda \right) \left( \nu - \mu\right)}
\frac{\partial}{\partial \nu} \left[ \sqrt{S(\nu)} \frac{\partial \Phi}{\partial \nu} \right]

Other differential operators such as \nabla \cdot \mathbf{F} and \nabla \times \mathbf{F} can be expressed in the coordinates (\lambda, \mu, \nu) by substituting the scale factors into the general formulae found in orthogonal coordinates.

See also[edit]

  • Focaloid (shell given by two coordinate surfaces)



  • Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 663. 
  • Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9. 
  • Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. pp. 101–102. LCCN 67025285. 
  • Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 176. LCCN 59014456. 
  • Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 178–180. LCCN 55010911. 
  • Moon PH, Spencer DE (1988). "Ellipsoidal Coordinates (η, θ, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed.). New York: Springer Verlag. pp. 40–44 (Table 1.10). ISBN 0-387-02732-7. 

Unusual convention[edit]

  • Landau LD, Lifshitz EM, Pitaevskii LP (1984). Electrodynamics of Continuous Media (Volume 8 of the Course of Theoretical Physics) (2nd ed.). New York: Pergamon Press. pp. 19–29. ISBN 978-0-7506-2634-7.  Uses (ξ, η, ζ) coordinates that have the units of distance squared.

External links[edit]

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Ellipsoidal_coordinates — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
45 videos foundNext > 

Quadric Surface: The Ellipsoid

This video explains how to determine the traces of an ellipsoid and how to graph an ellipsoid. http://mathispower4u.yolasite.com/

Line 22 7b97z57i Datum Coordinate Transformations UFO Ellipsoidal Equations 5g WOW SETI

http://alienspacesciencenews.wordpress.com/ 7b97z57i 100 videos there are more videos after this one i'll post all then update the #. Math Equation Wow Seti ...

Line 22 7b97z59 New Triangulation French Datum Ellipsoid Cartesian Coordinates UFO 5g WOW SETI

http://alienspacesciencenews.wordpress.com/ 7b97z59 100 videos there are more videos after this one i'll post all then update the #. Math Equation Wow Seti 1...

Line 22 7b97z57f Datum Molodensky  Transformations Geographic Coordinates 5g WOW SETI

http://alienspacesciencenews.wordpress.com/ 7b97z57f 100 videos there are more videos after this one i'll post all then update the #. Math Equation Wow Seti ...

Sketch of an Ellipsoid

Multivariable Calculus: Sketch the surface x^2/9 + y^2/16 + z^2/4 = 1. Show the sections in the xy-, xz-, and yz-planes. For more videos like these, please v...

Calculus 2: Lesson 15 (volume of an ellipsoid)

The formula for the volume of an ellipsoid is derived by revolving an ellipse around the y-axis.

Graphing Spheres and Ellipsoids

maurieo's Calculating Elements on Map Projections

Determining Projection Coordinates from Ellipsoidal Bearings and Ellipsoidal Distances using New Zealand Projections.


An ellipsoid is a closed quadric surface that is a three-dimensional analogue of an ellipse. The standard equation of an ellipsoid centered at the origin of ...

Analytisk geometri (flerdim) del 7 - ellipsoid

Flerdimensionell analys. Flervariabelanalys. Analytisk geometri i rummet. Ellipsoid.

45 videos foundNext > 

We're sorry, but there's no news about "Ellipsoidal coordinates" right now.


Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight