digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Deming regression. The red lines show the error in both x and y. This is different from the traditional least squares method which measures error parallel to the y axis. The case shown, with deviations measured perpendicularly, arises when errors in x and y have equal variances.

In statistics, Deming regression, named after W. Edwards Deming, is an errors-in-variables model which tries to find the line of best fit for a two-dimensional dataset. It differs from the simple linear regression in that it accounts for errors in observations on both the x- and the y- axis. It is a special case of total least squares, which allows for any number of predictors and a more complicated error structure.

Deming regression is equivalent to the maximum likelihood estimation of an errors-in-variables model in which the errors for the two variables are assumed to be independent and normally distributed, and the ratio of their variances, denoted δ, is known.[1] In practice, this ratio might be estimated from related data-sources; however the regression procedure takes no account for possible errors in estimating this ratio.

The Deming regression is only slightly more difficult to compute compared to the simple linear regression. Most statistical software packages used in clinical chemistry offer Deming regression.

The model was originally introduced by Adcock (1878) who considered the case δ = 1, and then more generally by Kummell (1879) with arbitrary δ. However their ideas remained largely unnoticed for more than 50 years, until they were revived by Koopmans (1937) and later propagated even more by Deming (1943). The latter book became so popular in clinical chemistry and related fields that the method was even dubbed Deming regression in those fields.[2]

## Specification

Assume that the available data (yi, xi) are measured observations of the "true" values (yi*, xi*), which lie on the regression line:

{\displaystyle {\begin{aligned}y_{i}&=y_{i}^{*}+\varepsilon _{i},\\x_{i}&=x_{i}^{*}+\eta _{i},\end{aligned}}}

where errors ε and η are independent and the ratio of their variances is assumed to be known:

${\displaystyle \delta ={\frac {\sigma _{\varepsilon }^{2}}{\sigma _{\eta }^{2}}}.}$

In practice, the variances of the ${\displaystyle x}$ and ${\displaystyle y}$ parameters are often unknown, which complicates the estimate of ${\displaystyle \delta }$. Note that when the measurement method for ${\displaystyle x}$ and ${\displaystyle y}$ is the same, these variances are likely to be equal, so ${\displaystyle \delta =1}$ for this case.

We seek to find the line of "best fit"

${\displaystyle y^{*}=\beta _{0}+\beta _{1}x^{*},}$

such that the weighted sum of squared residuals of the model is minimized:[3]

${\displaystyle SSR=\sum _{i=1}^{n}{\bigg (}{\frac {\varepsilon _{i}^{2}}{\sigma _{\varepsilon }^{2}}}+{\frac {\eta _{i}^{2}}{\sigma _{\eta }^{2}}}{\bigg )}={\frac {1}{\sigma _{\varepsilon }^{2}}}\sum _{i=1}^{n}{\Big (}(y_{i}-\beta _{0}-\beta _{1}x_{i}^{*})^{2}+\delta (x_{i}-x_{i}^{*})^{2}{\Big )}\ \to \ \min _{\beta _{0},\beta _{1},x_{1}^{*},\ldots ,x_{n}^{*}}SSR}$

## Solution

The solution can be expressed in terms of the second-degree sample moments. That is, we first calculate the following quantities (all sums go from i = 1 to n):

{\displaystyle {\begin{aligned}&{\overline {x}}={\frac {1}{n}}\sum x_{i},\quad {\overline {y}}={\frac {1}{n}}\sum y_{i},\\&s_{xx}={\tfrac {1}{n-1}}\sum (x_{i}-{\overline {x}})^{2},\\&s_{xy}={\tfrac {1}{n-1}}\sum (x_{i}-{\overline {x}})(y_{i}-{\overline {y}}),\\&s_{yy}={\tfrac {1}{n-1}}\sum (y_{i}-{\overline {y}})^{2}.\end{aligned}}}

Finally, the least-squares estimates of model's parameters will be[4]

{\displaystyle {\begin{aligned}&{\hat {\beta }}_{1}={\frac {s_{yy}-\delta s_{xx}+{\sqrt {(s_{yy}-\delta s_{xx})^{2}+4\delta s_{xy}^{2}}}}{2s_{xy}}},\\&{\hat {\beta }}_{0}={\overline {y}}-{\hat {\beta }}_{1}{\overline {x}},\\&{\hat {x}}_{i}^{*}=x_{i}+{\frac {{\hat {\beta }}_{1}}{{\hat {\beta }}_{1}^{2}+\delta }}(y_{i}-{\hat {\beta }}_{0}-{\hat {\beta }}_{1}x_{i}).\end{aligned}}}

## Orthogonal regression

For the case of equal error variances, i.e., when ${\displaystyle \delta =1}$, Deming regression becomes orthogonal regression: it minimizes the sum of squared perpendicular distances from the data points to the regression line. In this case, denote each observation as a point zj in the complex plane (i.e., the point (xj, yj) is written as zj = xj + iyj where i is the imaginary unit). Denote as Z the sum of the squared differences of the data points from the centroid (also denoted in complex coordinates), which is the point whose horizontal and vertical locations are the averages of those of the data points. Then:[5]

• If Z = 0, then every line through the centroid is a line of best orthogonal fit.
• If Z ≠ 0, the orthogonal regression line goes through the centroid and is parallel to the vector from the origin to ${\displaystyle {\sqrt {Z}}}$.

A trigonometric representation of the orthogonal regression line was given by Coolidge in 1913.[6]

### Application

In the case of three non-collinear points in the plane, the triangle with these points as its vertices has a unique Steiner inellipse that is tangent to the triangle's sides at their midpoints. The major axis of this ellipse falls on the orthogonal regression line for the three vertices.[7]

## Notes

1. ^
2. ^ Cornbleet, Gochman (1979)
3. ^ Fuller, ch.1.3.3
4. ^ Glaister (2001)
5. ^ Minda and Phelps (2008), Theorem 2.3.
6. ^ Coolidge, J. L. (1913).
7. ^ Minda and Phelps (2008), Corollary 2.4.

## References

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Deming_regression — Please support Wikipedia.
 193 videos foundNext >
 deming regressionDeming Regression or Orthogonal Regression for simple linier regression analysis if both of variables ( X and Y) have the measurement error. for any question ... Deming regression Top # 9 FactsDeming regression Top # 9 Facts. Deming Regression 1aPlus info for Deming regression. SigmaPlot Deming RegressionDeming Regression は、測定誤差を含む 2変数間の回帰直線を求めます。 測定誤差を変数毎に定数で指定するか、測定毎に異なる値で指定します。 Tutorial for MedCalc Deming Regression: 教學Tutorial for MedCalc Deming Regression: 教學MedCalc 授權經銷商SoftHome International ; Software for Science 13F, NO. 55, SEC.1, CHIEN KUO N-ROAD, ... Deming regression Top #10 Facts 免費統計教學範例48 Deming RegressionTutorial for SigmaPlot V.12 Deming Regression SigmaPlot 科學繪圖統計軟體教學範例V.12 二維及三維科學繪圖軟體The technical graphing software choice for ... Bland-Altman method comparison using Microsoft Excel videoLearn how to assess agreement between two methods of measurement using Analyse-it for Microsoft Excel. The tutorial covers the following tasks: - Plotting the ... Orthogonal design using SPSS Distance from a point to a lineThe distance (or perpendicular distance) from a point to a line is the shortest distance from a point to a line in Euclidean geometry. It is the length of the line ...
 193 videos foundNext >

We're sorry, but there's no news about "Deming regression" right now.

 Limit to books that you can completely read online Include partial books (book previews) .gsc-branding { display:block; }

Oops, we seem to be having trouble contacting Twitter