digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

The Darian calendar is a proposed system of time-keeping designed to serve the needs of any possible future human settlers on the planet Mars. It was created by aerospace engineer and political scientist Thomas Gangale in 1985 and named by him after his son Darius.

Year length and intercalation[edit]

The basic time periods from which the calendar is constructed are the Martian solar day (sometimes called a sol) and the Martian vernal equinox year, which is slightly different from the tropical year. The sol is 39 minutes 35.244 seconds longer than the Terrestrial solar day and the Martian vernal equinox year is 668.5907 sols in length. The basic intercalation formula therefore allocates six 669-sol years and four 668-sol years to each Martian decade. The former (still called leap years even though they are more common than non-leap years) are years that are either odd (not evenly divisible by 2) or else are evenly divisible by 10, producing 6,686 sols per ten years (668.6 sols per year).

A later iteration of the Darian calendar made years divisible by 100 common years, but years divisible by 500 stay leap years. This results in an error of only about one sol per 12,000 Martian years.[1]

Calendar layout[edit]

The year is divided into 24 months. The first 5 months in each quarter have 28 sols. The final month has only 27 sols unless it is the final month of a leap year when it contains the leap sol as its final sol.

The calendar maintains a seven-sol week, but the week is restarted from its first sol at the start of each month. If a month has 27 sols, this causes the final sol of the week to be omitted. This is partly for tidiness. It can also be rationalised as making the average length of the Martian week close to the average length of the Terrestrial week, although it must be remembered that 28 Earth days is roughly equal to 27 14 Martian sols and not 27 56 Martian sols.

In the table, the days of the week are Sol Solis, Sol Lunae, Sol Martis, Sol Mercurii, Sol Jovis, Sol Veneris, Sol Saturni.

Sagittarius   Dhanus   Capricornus
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27 28
         
Makara   Aquarius   Kumbha
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27  
         
Pisces   Mina   Aries
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27 28
         
Mesha   Taurus   Rishabha
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27  
         
Gemini   Mithuna   Cancer
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27 28
         
Karka   Leo   Simha
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27  
         
Virgo   Kanya   Libra
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27 28
         
Tula   Scorpius   Vrishika
So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa So Lu Ma Me Jo Ve Sa
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
8 9 10 11 12 13 14 8 9 10 11 12 13 14 8 9 10 11 12 13 14
15 16 17 18 19 20 21 15 16 17 18 19 20 21 15 16 17 18 19 20 21
22 23 24 25 26 27 28 22 23 24 25 26 27 28 22 23 24 25 26 27 28

The last day of Vrishika is an intercalary day that does not occur in every year.

Start of year[edit]

The Martian year is treated as beginning near the equinox marking spring in the northern hemisphere of the planet. Mars currently has an axial inclination similar to that of the Earth, so the Martian seasons are perceptible, though the greater eccentricity of Mars' orbit about the Sun compared with that of the Earth means that their significance is strongly amplified in the southern hemisphere and masked in the northern hemisphere. The most sophisticated calculations of the Darian calendar extend to the point of making allowance for the slight increase in the length of the Martian vernal equinox year over several thousand years. These prescribe a more complicated intercalation formula (for details see the link cited below).

Epoch[edit]

Gangale originally chose late 1975 as the epoch of the calendar in recognition of the American Viking program as the first fully successful American soft landing mission to Mars and ignoring the earlier 1971 Soviet Mars 3 Landing. In 2002 he adopted the Telescopic Epoch, first suggested by Peter Kokh, which is in 1609 in recognition of Johannes Kepler's use of Tycho Brahe's observations of Mars to elucidate the laws of planetary motion, and also Galileo Galilei's first observations of Mars with a telescope. Selection of the Telescopic Epoch avoids the problem of the many telescopic observations of Mars over the past 400 years being relegated to negative dates.

Nomenclature[edit]

Suggested variations of the Darian calendar abound on the World Wide Web that use different nomenclature schemata for the days of the week and the months of the year. The names of the 24 months were provisionally chosen by Gangale as the Latin names of constellations of the zodiac and their Sanskrit equivalents in alternation. The 7 sols of the week, similarly, were provisionally named after the Sun, Moon and the 5 brightest planets as seen from Mars — including Earth. The Darian Defrost Calendar, for instance, creates new names for the Martian months out of patterns relating letter choice and name length to month order and season. The Utopian Calendar, devised by the Mars Time Group in 2001, has additional suggestions for nomenclature modification.

Martiana calendar[edit]

In 2002 Gangale devised a variant of the Darian calendar that reconciles the months and the sols of the week in a repeating pattern and removes the need to omit days of the week. In the Martiana variant, all the months in a given quarter begin on the same sol of the week, but the sol that begins each month shifts from one quarter to the next.

The following table shows the sol of the week on which each month in the quarter begins. The first quarter corresponds to spring in the Martian northern hemisphere and autumn in the Martian southern hemisphere.

  First quarter Second quarter Third quarter Last quarter
Even-numbered years Sol Solis Sol Saturni Sol Veneris Sol Jovis
Odd-numbered years Sol Mercurii Sol Martis Sol Lunae Sol Solis

The leap sol occurs at the end of odd-numbered years as in the original Darian calendar. Since the last month of odd-numbered years contains 28 sols, the following year also begins on Sol Solis, resulting in a two-year cycle over which the relationship of the sols of the week to the months repeats. The sol that is added every tenth year is epagomenal (not counted as part of the week), thus the two-year rotation of the sols of the week is not disrupted. The Martiana scheme avoids the Darian calendar's need to shorten the week to six sols three to four times per year. The disadvantage is that the scheme results in a two-year cycle for reconciling the sols of the week and the months, whereas the Darian calendar is repeatable from month to month.

Other Darian calendars[edit]

In 1998 Gangale adapted the Darian calendar for use on the four Galilean moons of Jupiter discovered by Galileo in 1610: Io, Europa, Ganymede, and Callisto. In 2003 he created a variant of the calendar for Titan.

Important dates in Martian history[edit]

Event Gregorian Date UTC SCET Darian Date Mars Julian Sol Mars Sol Date Airy Mean Time
Mariner 4 flyby 15 July 1965 1:00:57 26 Taurus 189 126668 32539 23:25
Mariner 6 flyby 31 July 1969 5:19:07 15 Cancer 191 128106 33977 15:10
Mariner 7 flyby 5 August 1969 5:00:49 20 Cancer 191 128111 33982 11:29
Mariner 9 entered orbit 13 November 1971 18:00 20 Kanya 192 128919 34790 19:19
Mars 2 entered orbit 27 November 1971 6 Libra 192* 128933* 34804
Mars 3 contact lost 15 seconds after landing 2 December 1971 13:52 11 Libra 192 128938 34809 3:06
Mars 2 contact lost 22 Aug 1972 16 Kumbha 193* 129194* 35065*
Mariner 9 contact lost 27 October 1972 26 Mina 193* 129259* 35130*
Mars 4 failed to enter orbit 10 February 1974 10 Sagittarius 194* 129717* 35588*
Mars 5 entered orbit 12 February 1974 15:45 12 Sagittarius 194 129719 35590 17:18
Mars 5 contact lost 7 March 1974 6 Dhanus 194* 129741* 35612*
Mars 7 lander missed Mars 9 March 1974 8 Dhanus 194* 129743* 35614*
Mars 6 landing, contact lost after 224 seconds 12 March 1974 9:11:05 11 Dhanus 194 129746 35617 16:56
Viking 1 entered orbit 19 June 1976 12 Pisces 195* 130554: 36425*
Viking 1 landing 20 July 1976 11:53 14 Mina 195 130584 36455 18:40
Viking 2 entered orbit 7 August 1976 4 Aries 195* 130602* 36473*
Viking 2 landing 3 September 1976 22:58 3 Mesha 195 130629 36500 0:34
Viking 2 Orbiter contact lost 25 July 1978 5 Mesha 196* 131300* 37171*
Viking 2 Lander contact lost 11 April 1980 2 Mina 197 131909 37780
Viking 1 Orbiter contact lost 17 August 1980 14 Rishabha 197 132033 37904
Viking 1 Lander contact lost 11 November 1982 1 Leo 198 132828 38699
Phobos 2 entered orbit 29 January 1989 11 Vrishika 201* 135038* 40909*
Phobos 2 contact lost 27 March 1989 10 Dhanus 202* 135093* 40964*
Mars Pathfinder landing 4 July 1997 16:57 26 Taurus 206 138034 43905 4:41
Mars Pathfinder rover Sojourner contact lost 27 September 1997 10:23 25 Mithuna 206 138116 43987 15:43
Mars Global Surveyor entered orbit 11 September 1997 1:17:00 9 Mithuna 206 138100 43971 17:08
Mars Climate Orbiter destroyed entering atmosphere 23 September 1999 9:05 8 Karka 207 138823 44694 4:16
Mars Polar Lander impact 3 December 1999 20:15 21 Simha 207 138892 44763 17:32
2001 Mars Odyssey entered orbit 24 October 2001 2:18:00 24 Simha 208 139564 45435 12:21
Nozomi failed to enter orbit 14 December 2003 6 Tula 209* 140325* 46196*
Mars Express entered orbit 25 December 2003 3:00 16 Tula 209 140335 46206 8:27
Beagle 2 lander impact 25 December 2003 3:54:00 16 Tula 209 140335 46206 9:20
MER-A Spirit landing 4 January 2004 4:35 26 Tula 209 140345 46216 3:35
MER-B Opportunity landing 25 January 2004 5:05 18 Scorpius 209 140365 46236 14:35
Mars Reconnaissance Orbiter entered orbit 10 March 2006 21:24 20 Dhanus 211 141120 46991 12:48
Phoenix landing 25 May 2008 23:54 25 Kumbha 212 141906 47777 1:02
Phoenix contact lost 28 October 2008 9 Rishabha 212 142057 47928
MER-A Spirit contact lost 22 March 2010 4 Kumbha 213 142553 48424
MSL Curiosity landing 6 August 2012 5:17 13 Rishhaba 214 143398 49269 5:50

See also[edit]

Notes[edit]

  1. ^ Gangale, Thomas. "The Darian Calendar for Mars". The Darian System. Archived from the original on 4 November 2013. Retrieved 21 March 2014. 

References[edit]

  • Gangale, Thomas. (1986-06-01). "Martian Standard Time". Journal of the British Interplanetary Society. Vol. 39, No. 6, p. 282-288
  • Gangale, Thomas. (1997-02-01). "Mare Chronium: A Brief History of Martian Time". American Astronautical Society. AAS 90-287.
  • The Case for Mars IV: The International Exploration of Mars. Ed. Thomas R. Meyer. San Diego, California. Univelt, Incorporated.
  • Gangale, Thomas. (1999-07-01). "The Darian Calendar". Mars Society. MAR 98-095. Proceedings of the Founding Convention of the Mars Society. Volume III. Ed. Robert M. Zubrin, Maggie Zubrin. San Diego, California. Univelt, Incorporated. 13-Aug-1998.
  • Gangale, Thomas, and Dudley-Rowley, Marilyn. (2004-07-01). "The Architecture of Time: Design Implications for Extended Space Missions" Society of Automotive Engineers. SAE 2004-01-2533. SAE Transactions: Journal of Aerospace.
  • Gangale, Thomas, and Dudley-Rowley, Marilyn. (2005-12-01). "Issues and Options for a Martian Calendar". Planetary and Space Science. Vol. 53, pp. 1483–1495.
  • Gangale, Thomas. (2006-07-01). "The Architecture of Time, Part 2: The Darian System for Mars." Society of Automotive Engineers. SAE 2006-01-2249.
  • Sakers, Don. (2004-01-01). The Sf Book of Days, pp. 7, 19, 31, 53, 81, 103, 113, 123, 135, 145-149. Speed-Of-C Productions.
  • Smith, Arthur E. (1989-01-01). Mars: The next step, p. 7. Taylor & Francis

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Darian_calendar — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.

We're sorry, but there's no news about "Darian calendar" right now.

Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Darian calendar

You can talk about Darian calendar with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!