digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

A container-freight train on the West Coast Main Line near Nuneaton, England
A container ship being loaded by a portainer crane in Copenhagen Harbor

Containerization is a system of intermodal freight transport using intermodal containers (also called shipping containers and ISO containers) made of weathering steel. The containers have standardized dimensions. They can be loaded and unloaded, stacked, transported efficiently over long distances, and transferred from one mode of transport to another—container ships, rail transport flatcars, and semi-trailer trucks—without being opened. The handling system is completely mechanized so that all handling is done with cranes and special forklift trucks. All containers are numbered and tracked using computerized systems.

The system, developed after World War II, dramatically reduced transport costs, supported the post-war boom in international trade, and was a major element in globalization. Containerization did away with the sorting of most shipments and the need for warehousing. It displaced many thousands of dock workers who formerly handled break bulk cargo. Containerization also reduced congestion in ports, significantly shortened shipping time and reduced losses from damage and theft.[1]

History[edit]

Origins[edit]

Containerization has its origins in early coal mining regions in England beginning in the late 18th century. In 1795, Benjamin Outram opened the Little Eaton Gangway, upon which coal was carried in wagons built at his Butterley Ironwork. The horse-drawn wheeled wagons on the gangway took the form of containers, which, loaded with coal, could be transshipped from canal barges on the Derby Canal, which Outram had also promoted.[2]

By the 1830s, railroads on several continents were carrying containers that could be transferred to other modes of transport. The Liverpool and Manchester Railway in the United Kingdom was one of these. "Simple rectangular timber boxes, four to a wagon, they were used to convey coal from the Lancashire collieries to Liverpool, where they were transferred to horse-drawn carts by crane."[3] Originally used for moving coal on and off barges, "loose boxes" were used to containerize coal from the late 1780s, at places like the Bridgewater Canal. By the 1840s, iron boxes were in use as well as wooden ones. The early 1900s saw the adoption of closed container boxes designed for movement between road and rail.

From 1926 to 1947 in the United States, the Chicago North Shore and Milwaukee Railway carried motor carrier vehicles and shippers' vehicles loaded on flatcars between Milwaukee, Wisconsin, and Chicago, Illinois. Beginning in 1929, Seatrain Lines carried railroad boxcars on its sea vessels to transport goods between New York and Cuba.[4] In the mid-1930s, the Chicago Great Western Railway and then the New Haven Railroad began "piggyback" service (transporting highway freight trailers on flatcars) limited to their own railroads. By 1953, the CB&Q, the Chicago and Eastern Illinois, and the Southern Pacific railroads had joined the innovation. Most cars were surplus flatcars equipped with new decks. By 1955, an additional 25 railroads had begun some form of piggyback trailer service.

Malcolm McLean at railing, Port Newark, 1957

During World War II, the Australian Army used containers to help overcome the various breaks of gauge. These non-stackable containers were about the size of the later 20-foot ISO container and perhaps made mainly of wood.[5][need quotation to verify]

Toward the end of World War II, the US Army used specialized containers to speed the loading and unloading of transport ships. The army used the term "transporters" to identify the containers, for shipping household goods of officers in the field. A transporter was a reusable container, 8.5 feet (2.6 m) long, 6.25 feet (1.91 m) wide, and 6.83 feet (2.08 m) high, made of rigid steel and with a carrying capacity of 9,000 pounds. During the Korean War the transporter was evaluated for handling sensitive military equipment and, proving effective, was approved for broader use. Theft of material and damage to wooden crates convinced the army that steel containers were needed.

In 1952 the army began using the term CONEX, short for "container express". The first major shipment of CONEXes, containing engineering supplies and spare parts, was made by rail from the Columbus General Depot in Georgia to the Port of San Francisco, then by ship to Yokohama, Japan, and then to Korea, in late 1952; shipment times were almost halved. By the time of the Vietnam War the majority of supplies and materials were shipped by CONEX. After the US Department of Defense standardized an 8-foot by 8-foot cross section container in multiples of 10-foot lengths for military use, it was rapidly adopted for shipping purposes.[6][7]

The railways of the USSR had their own small containers.[8]

In 1955, former trucking company owner Malcom McLean worked with engineer Keith Tantlinger to develop the modern intermodal container. The challenge was to design a shipping container that could efficiently be loaded onto ships and would hold securely on long sea voyages. The result was a 8 feet (2.4 m) tall by 8 ft (2.4 m) wide box in 10 ft (3.0 m)-long units constructed from 2.5 mm (0.098 in) thick corrugated steel. The design incorporated a twistlock mechanism atop each of the four corners, allowing the container to be easily secured and lifted using cranes. After helping McLean make the successful design, Tantlinger convinced him to give the patented designs to industry; this began international standardization of shipping containers.[9]

Purpose-built ships[edit]

Containers waiting at the South Korean port of Busan.
Main article: Container ship

The first vessels purpose-built to carry containers began operation in Denmark in 1951.[10]:31 In the United States, ships began carrying containers in 1951, between Seattle and Alaska.[11] However, none of these services was particularly successful. Firstly, the containers were rather small, with 52% of them having a volume of less than 3 cubic metres (110 cu ft). Almost all the European ones were made of wood and used canvas lids. Furthermore, they required additional loading into rail or truck bodies.[10]:31–32

The world's first purpose-built container ship was the Clifford J. Rodgers, built in Montreal in 1955 and owned by the White Pass and Yukon Route. Its first trip carried 600 containers between North Vancouver, British Columbia, and Skagway, Alaska, on November 26, 1955; in Skagway, the containers were unloaded to purpose-built railroad cars for transport north to the Yukon, in the first intermodal service using trucks, ships, and railroad cars.[12] Southbound containers were loaded by shippers in the Yukon and moved by rail, ship, and truck to their consignees without opening. This first intermodal system operated from November 1955 until 1982.[13]

The first truly successful container shipping company dates to April 26, 1956, when American trucking entrepreneur McLean put 58 containers aboard a refitted tanker ship, the SS Ideal X, and sailed them from Newark to Houston.[10]:1 Independently of the events in Canada, McLean had the idea of using large containers that never opened in transit and that were transferable on an intermodal basis, among trucks, ships, and railroad cars. McLean had initially favored the construction of "trailerships"—taking trailers from large trucks and stowing them in a ship’s cargo hold. This method of stowage, referred to as roll-on/roll-off, was not adopted because of the large waste in potential cargo space on board the vessel, known as broken stowage. Instead, McLean modified his original concept into loading just the containers, not the chassis, onto the ship; hence the designation "container ship" or "box" ship.[14][15] (See also pantechnicon van and trolley and lift van.)

Toward standards[edit]

Keppel Container Terminal in Singapore

During the first 20 years of containerization, many container sizes and corner fittings were used; there were dozens of incompatible container systems in the United States alone. Among the biggest operators, the Matson Navigation Company had a fleet of 24-foot (7.3 m) containers, while Sea-Land Service, Inc used 35-foot (11 m) containers. The standard sizes and fitting and reinforcement norms that now exist evolved out of a series of compromises among international shipping companies, European railroads, US railroads, and US trucking companies. Four important ISO (International Organization for Standardization) recommendations standardized containerization globally:[16]

  • January 1968: R-668 defined the terminology, dimensions and ratings.
  • July 1968: R-790 defined the identification markings.
  • January 1970: R-1161 made recommendations about corner fittings.
  • October 1970: R-1897 set out the minimum internal dimensions of general purpose freight containers.

In the United States, containerization and other advances in shipping were impeded by the Interstate Commerce Commission (ICC), which was created in 1887 to keep railroads from using monopolist pricing and rate discrimination but fell victim to regulatory capture. By the 1960s, ICC approval was required before any shipper could carry different items in the same vehicle or change rates. The fully integrated systems in the United States today became possible only after the ICC's regulatory oversight was cut back (and abolished in 1995); trucking and rail were deregulated in the 1970s and maritime rates were deregulated in 1984.[17]

Double-stacked rail transport, where containers are stacked two high on railway cars, was introduced in the United States. The concept was developed by Sea-Land and the Southern Pacific railroad. The first standalone double-stack container car (or single-unit 40-ft COFC well car) was delivered in July 1977. The 5-unit well car, the industry standard, appeared for the first time in 1981. Initially, these double-stack railway cars were deployed in regular train service. Ever since American President Lines initiated in 1984 a dedicated double-stack container train service between Los Angeles and Chicago, transport volumes increased rapidly.[citation needed]

Effects[edit]

Shanghai Express, Port of Rotterdam

Containerization greatly reduced the expense of international trade and increased its speed, especially of consumer goods and commodities. It also dramatically changed the character of port cities worldwide. Prior to highly mechanized container transfers, crews of 20–22 longshoremen would pack individual cargoes into the hold of a ship. After containerization, large crews of longshoremen were no longer necessary at port facilities, and the profession changed drastically.

Meanwhile, the port facilities needed to support containerization changed. One effect was the decline of some ports and the rise of others. At the Port of San Francisco, the former piers used for loading and unloading were no longer required, but there was little room to build the vast holding lots needed for container transport. As a result, the Port of San Francisco virtually ceased to function as a major commercial port, but the neighboring port of Oakland emerged as the second largest on the US West Coast. A similar fate met the relation between the ports of Manhattan and New Jersey. In the United Kingdom, the Port of London and Port of Liverpool declined in importance. Meanwhile, Britain's Port of Felixstowe and Port of Rotterdam in the Netherlands emerged as major ports. In general, inland ports on waterways incapable of deep-draft ship traffic also declined from containerization in favor of seaports. With intermodal containers, the job of sorting and packing containers could be performed far from the point of embarking.

Twenty-first century[edit]

A converted container used as an office at a building site

As of 2009, approximately 90% of non-bulk cargo worldwide is moved by containers stacked on transport ships;[18] 26% of all container transhipment is carried out in China.[19] For example, in 2009 there were 105,976,701 transshipments in China (both international and coastal, excluding Hong Kong), 21,040,096 in Hong Kong (which is listed separately), and only 34,299,572 in the United States. In 2005, some 18 million containers made over 200 million trips per year. Some ships can carry over 14,500 twenty-foot equivalent units (TEU), such as the Emma Mærsk, 396 m long, launched in August 2006. It has been predicted that, at some point, container ships will be constrained in size only by the depth of the Straits of Malacca, one of the world's busiest shipping lanes, linking the Indian Ocean to the Pacific Ocean. This so-called Malaccamax size constrains a ship to dimensions of 470 m (1,540 ft) in length and 60 m (200 ft) wide.[15]

However, few initially foresaw the extent of the influence of containerization on the shipping industry. In the 1950s, Harvard University economist Benjamin Chinitz predicted that containerization would benefit New York by allowing it to ship its industrial goods more cheaply to the Southern United States than other areas, but he did not anticipate that containerization might make it cheaper to import such goods from abroad. Most economic studies of containerization merely assumed that shipping companies would begin to replace older forms of transportation with containerization, but did not predict that the process of containerization itself would have a more direct influence on the choice of producers and increase the total volume of trade.[15]

The widespread use of ISO standard containers has driven modifications in other freight-moving standards, gradually forcing removable truck bodies or swap bodies into standard sizes and shapes (though without the strength needed to be stacked), and changing completely the worldwide use of freight pallets that fit into ISO containers or into commercial vehicles.

Improved cargo security is also an important benefit of containerization. The cargo is not visible to the casual viewer and thus is less likely to be stolen; the doors of the containers are usually sealed so that tampering is more evident. Some containers are fitted with electronic monitoring devices and can be remotely monitored for changes in air pressure, which happens when the doors are opened. This reduced the thefts that had long plagued the shipping industry. Recent developments have focused on the use of intelligent logistics optimization to further enhance security.

The use of the same basic sizes of containers across the globe has lessened the problems caused by incompatible rail gauge sizes in different countries. The majority of the rail networks in the world operate on a 1,435 mm (4 ft 8 12 in) gauge track known as standard gauge, but many countries (such as Russia, India, Finland, and Lithuania) use broader gauges, while many others in Africa and South America use narrower gauges on their networks. The use of container trains in all these countries makes transshipment between different trains of different gauges easier.

Containers have become a popular way to ship private cars and other vehicles overseas using 20- or 40-foot containers. Unlike roll-on/roll-off vehicle shipping, personal effects can be loaded into the container with the vehicle, allowing for easy international relocation.[citation needed]

Container standards[edit]

ISO standard[edit]

Main article: Intermodal container

There are five common standard lengths: 20-ft (6.1 m), 40-ft (12.2 m), 45-ft (13.7 m), 48-ft (14.6 m), and 53-ft (16.2 m). US domestic standard containers are generally 48 ft (15 m) and 53-ft (rail and truck). Container capacity is often expressed in twenty-foot equivalent units (TEU, or sometimes teu). An equivalent unit is a measure of containerized cargo capacity equal to one standard 20 ft (length) × 8 ft (width) container. As this is an approximate measure, the height of the box is not considered. For instance, the 9 ft 6 in (2.9 m) high cube and the 4-ft 3-in (1.3 m) half height 20 ft (6.1 m) containers are also called one TEU.

The maximum gross mass for a 20 ft (6.1 m) dry cargo container is 24,000 kg, and for a 40-ft container (including the 2.87 m (9 ft 6 in) high cube) it is 30,480 kg. Allowing for the tare mass of the container, the maximum payload mass is therefore reduced to approximately 22,000 kg for 20 ft (6.1 m), and 27,000 kg for 40 ft (12 m) containers.[20]

The original choice of 8-foot (2.4 m) height for ISO containers was made in part to suit a large proportion of railway tunnels, though some had to be modified. The current standard is eight feet six inches (2591 mm) high. With the arrival of even taller hi-cube containers at nine feet six inches (2896 mm), further enlargement is proving necessary.[21]

Air freight containers[edit]

A number of LD-designation Unit Load Device containers
Main article: Unit load device

While major airlines use containers that are custom designed for their aircraft and associated ground handling equipment the IATA has created a set of standard aluminium container sizes of up to 11.52 m3 (407 cu ft) in volume.

Other container system standards[edit]

Some other container systems (in date order) are:

Container loading[edit]

Full container load[edit]

A full container load (FCL) is an ISO standard container that is loaded and unloaded under the risk and account of one shipper and only one consignee. In practice, it means that the whole container is intended for one consignee. FCL container shipment tends to have lower freight rates than an equivalent weight of cargo in bulk. FCL is intended to designate a container loaded to its allowable maximum weight or volume, but FCL in practice on ocean freight does not always mean a full payload or capacity.

Less-than-container load[edit]

Less-than-container load (LCL) is a shipment that is not large enough to fill a standard cargo container. The abbreviation LCL formerly applied to "less than (railway) car load" for quantities of material from different shippers or for delivery to different destinations carried in a single railway car for efficiency. LCL freight was often sorted and redistributed into different railway cars at intermediate railway terminals en route to the final destination.[35]

LCL is "a quantity of cargo less than that required for the application of a carload rate. A quantity of cargo less than that fills the visible or rated capacity of an inter-modal container."[citation needed] It can also be defined as "a consignment of cargo which is inefficient to fill a shipping container. It is grouped with other consignments for the same destination in a container at a container freight station".[36]

Issues[edit]

Hazards[edit]

Containers have been used to smuggle contraband. The vast majority of containers are never subjected to scrutiny due to the large number of containers in use. In recent years there have been increased concerns that containers might be used to transport terrorists or terrorist materials into a country undetected. The US government has advanced the Container Security Initiative (CSI), intended to ensure that high-risk cargo is examined or scanned, preferably at the port of departure.

Empty containers[edit]

Containers are intended to be used constantly, being loaded with new cargo for a new destination soon after having been emptied of previous cargo. This is not always possible, and in some cases, the cost of transporting an empty container to a place where it can be used is considered to be higher than the worth of the used container. Shipping lines and container leasing companies have become expert at repositioning empty containers from areas of low or no demand, such as the US West Coast, to areas of high demand, such as China. Repositioning within the port hinterland has also been the focus of recent logistics optimization work. However, damaged or retired containers may also be recycled in the form of shipping container architecture, or the steel content salvaged. In the summer of 2010, a worldwide shortage of containers developed as shipping increased after the recession, while new container production had largely ceased.[37]

Loss at sea[edit]

Containers occasionally fall from ships, usually during storms; according to media sources, between 2,000[38] and 10,000 containers are lost at sea each year.[39] The World Shipping Council states in a survey among freight companies that this claim is grossly excessive and calculated an average of 350 containers to be lost at sea each year, or 675 if including catastrophic events.[40] For instance, on November 30, 2006, a container washed ashore[41] on the Outer Banks of North Carolina, along with thousands of bags of its cargo of Doritos Chips. Containers lost in rough waters are smashed by cargo and waves, and often sink quickly.[38] Although not all containers sink, they seldom float very high out of the water, making them a shipping hazard that is difficult to detect. Freight from lost containers has provided oceanographers with unexpected opportunities to track global ocean currents, notably a cargo of Friendly Floatees.[42]

In 2007 the International Chamber of Shipping and the World Shipping Council began work on a code of practice for container storage, including crew training on parametric rolling, safer stacking, the marking of containers, and security for above-deck cargo in heavy swell.[43][44]

In 2011, the MV Rena ran aground off the coast of New Zealand. As the ship listed, some containers were lost, while others were held on board at a precarious angle.

Trade union challenges[edit]

Some of the biggest battles in the container revolution were waged in Washington, DC. Intermodal shipping got a huge boost in the early 1970s, when carriers won permission to quote combined rail-ocean rates. Later, non-vessel-operating common carriers won a long court battle with a US Supreme Court decision against contracts that attempted to require that union labor be used for stuffing and stripping containers at off-pier locations.[45]

Other uses for containers[edit]

Shipping container architecture is the use of containers as the basis for housing and other functional buildings for people, either as temporary or permanent housing, and either as a main building or as a cabin or workshop. Containers can also be used as sheds or storage areas in industry and commerce.

Tempo Housing in Amsterdam stacks containers for individual housing units.

Containers are also beginning to be used to house computer data centers, although these are normally specialized containers.

There is now a high demand for containers to be converted in the domestic market to serve specific purposes. As a result, a number of container-specific accessories have become available for a variety of applications, such as racking for archiving, lining/heating/lighting/powerpoints to create purpose-built secure offices, canteens and drying rooms, condensation control for furniture storage, and ramps for storage of heavier objects. Containers are also converted to provide equipment enclosures, pop-up cafes, exhibition stands, security huts, and more.

Public containerised transport [46] is the concept, not yet implemented, of modifying motor vehicles to serve as personal containers in non-road passenger transport.

The ACTS roller container standards have become the basis of containerized firefighting equipment throughout Europe.

BBC tracking project[edit]

On September 5, 2008, the BBC embarked on a year-long project to study international trade and globalization by tracking a shipping container on its journey around the world.[47][48]

See also[edit]

References[edit]

  1. ^ Levinson, Marc. "Sample Chapter for Levinson, M.: The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger.". The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger. Princeton University Press. Retrieved 17 February 2013. 
  2. ^ Ripley, David (1993). The Little Eaton Gangway and Derby Canal (Second ed.). Oakwood Press. ISBN 0-85361-431-8.
  3. ^ Essery, R. J, Rowland. D. P. & Steel W. O. British Goods Wagons from 1887 to the Present Day. Augustus M. Kelly Publishers. New York USA. 1979 Page 92
  4. ^ Seatrain: Railroad or steamship line?, Robert E. Mohowski, Classic Trains, Spring 2011, pp. 64-73
  5. ^ With Iron Rails p8.26 by David Burke 1988[full citation needed]
  6. ^ "History & Development of the Container". U.S. Army Transportation Museum. United States Army Transportation School. Retrieved: 2007-12-29
  7. ^ CONEX. Defense Technical Information Center (DTIC)
  8. ^ "Photos of containers in Baku". Freespace.virgin.net. 1999-03-09. Retrieved 2011-11-28. 
  9. ^ McGough, Roger (Narrator), McAulay, Graeme (Director & Producer), Crossley-Holland, Dominic (Executive Producer) (2010). The Box that Changed Britain (documentary). BBC. 
  10. ^ a b c Marc Levinson (2006). The Box: How the Shipping Container Made the World Smaller and the World Economy Bigger. Princeton Univ. Press. ISBN 0-691-12324-1. 
  11. ^ Antonson, Joan M.; Hanable, William S. (1985). Alaska's heritage. Alaska Historical Society for the Alaska Historical Commission, Dept. of Education, State of Alaska. p. 328. ISBN 978-0-943712-18-5. Retrieved 24 April 2012. 
  12. ^ "Cargo Container". Treasures of the Yukon. Yukon Museum Guide. Retrieved 24 April 2012. 
  13. ^ McLaughlin, Les. "White Pass: The Container Pioneers". CKRW-FM. Retrieved 24 April 2012. 
  14. ^ Cudahy, Brian J., "The Containership Revolution: Malcom McLean’s 1956 Innovation Goes Global". TR News. (c/o National Academy of Sciences). Number 246. September–October 2006. (Adobe Acrobat *.PDF document)
  15. ^ a b c Levinson (2006), The Box.
  16. ^ Rushton, A., Oxley, J., Croucher, P. (2004). The Handbook of Logistics and Distribution Management. Kogan Page: London.
  17. ^ Postrel, Virginia (2006-03-23). "The Box that Changed the World". Dynamist.com. Retrieved 2008-02-14. 
  18. ^ Ebeling, C. E. (Winter 2009). "Evolution of a Box". Invention and Technology 23 (4): 8–9. ISSN 8756-7296. 
  19. ^ "Container port traffic (TEU: 20 foot equivalent units) | Data | Table". Data.worldbank.org. Retrieved 2011-11-28. 
  20. ^ "Shipping containers". Emase. Retrieved 2007-02-10. 
  21. ^ http://railwaysafrica.com/index.php?option=com_content&task=view&id=3493&Itemid=36
  22. ^ "ENGINEERING.". The Argus (Melbourne, Vic. : 1848 - 1956) (Melbourne, Vic.: National Library of Australia). 16 February 1922. p. 11. Retrieved 25 October 2011. 
  23. ^ "FREIGHT HANDLING.". The West Australian (Perth, WA : 1879 - 1954) (Perth, WA: National Library of Australia). 30 July 1925. p. 4. Retrieved 29 October 2011. 
  24. ^ "NEW TRANSPORT METHOD.". Examiner (Launceston, Tas. : 1900 - 1954) (Launceston, Tas.: National Library of Australia). 7 June 1929. p. 11 Edition: DAILY. Retrieved 25 October 2011. 
  25. ^ "COMMERCIAL.". The Sydney Morning Herald (NSW : 1842 - 1954) (NSW: National Library of Australia). 13 May 1929. p. 13. Retrieved 26 October 2011. 
  26. ^ "RAILWAY CONTAINERS.". The Sydney Morning Herald (NSW : 1842 - 1954) (NSW: National Library of Australia). 2 January 1936. p. 9. Retrieved 27 October 2011. 
  27. ^ "THE COUNTRY PAGE.". The Argus (Melbourne, Vic. : 1848 - 1956) (Melbourne, Vic.: National Library of Australia). 12 December 1928. p. 26. Retrieved 27 October 2011. 
  28. ^ "THROUGH ROAD, RAIL AND WATER TRAFFIC.". Morning Bulletin (Rockhampton, Qld. : 1878 - 1954) (Rockhampton, Qld.: National Library of Australia). 26 April 1929. p. 10. Retrieved 28 October 2011. 
  29. ^ "NEW RAILWAY CONTAINER.". The Sydney Morning Herald (NSW : 1842 - 1954) (NSW: National Library of Australia). 8 September 1930. p. 11. Retrieved 25 October 2011. 
  30. ^ "INTERNATIONAL CONTAINER.". The Sydney Morning Herald (NSW : 1842 - 1954) (NSW: National Library of Australia). 31 December 1931. p. 9. Retrieved 26 October 2011.  ICC
  31. ^ "INTERNATIONAL CONTAINER BUREAU.". The Sydney Morning Herald (NSW : 1842 - 1954) (NSW: National Library of Australia). 18 April 1933. p. 13. Retrieved 27 October 2011. 
  32. ^ a b "New Freight Containers For S.E. Railway Services.". The Advertiser (Adelaide, SA : 1931 - 1954) (Adelaide, SA: National Library of Australia). 23 April 1936. p. 19. Retrieved 26 October 2011. 
  33. ^ "MILK BUSINESS.". Cairns Post (Qld. : 1909 - 1954) (Qld.: National Library of Australia). 14 February 1946. p. 4. Retrieved 26 October 2011. 
  34. ^ Containertrading - Standard Container
  35. ^ Henry, Robert Selph (1942). This Fascinating Railroad Business. The Bobs-Merrill Company. pp. 319–321. 
  36. ^ "KNOW NET 2: The Federal Logistics SuperSite - The Federal Transportation Management Desk Reference: Glossary - Definitions". [dead link]
  37. ^ Posted on Thu, Aug 19, 2010 @ 05:03 PM (2010-08-19). "Shipping Container Shortage Pushing Up Prices". Universalcargo.com. Retrieved 2011-11-28. 
  38. ^ a b Containers Overboard! TT Club (Maritime insurers). Accessed: 26 February 2011.
  39. ^ Podsada, Janice. (2001-06-19) 'Lost Sea Cargo: Beach Bounty or Junk?', National Geographic News.[1] Retrieved 2007-04-17
  40. ^ [2] [3] (World Shipping Council). Accessed: 11 July 2013.
  41. ^ © November 30, 2006 (2006-11-30). "Photos: Spilled Doritos chips wash up on Outer Banks | HamptonRoads.com | PilotOnline.com". HamptonRoads.com. Retrieved 2011-11-28. 
  42. ^ "Rubber Duckies Map The World" - CBS News - July 31, 2003
  43. ^ Murdoch & Tozer. A Master’s guide to Container Securing Lloyd's Register & Standard P&I Club. Accessed: 26 February 2011.
  44. ^ "Banana box slip a worry". Lloyd's List Daily Commercial News (Informa Australia). 2008-02-07. Retrieved 2008-02-14. 
  45. ^ "854 F.2d 1338, 129 L.R.R.M. (BNA) 2001, 1988 A.M.C. 2409, 272 U.S.App.D.C. 129, 57 USLW 2147, 109 Lab.Cas. P 10,681, NEW YORK SHIPPING ASSOCIATION, INC., International Longshoremen's Association, AFL-CIO, Council of North Atlantic Shipping Associations, Atlantic Container Line, Ltd., Dart Containerline Company, Limited, Hapag-Lloyd Aktiengesellschaft, "Italia" S.P.A.N., Nedlloyd Lines B.V., Puerto Rico Maritime Shipping Authority, Sea-Land Service, Inc., Trans Freight Lines, Inc., and United States Lines, Inc., Petitioners, v. FEDERAL MARITIME COMMISSION and United States of America, Respondents. NEW YORK SHIPPING ASSOCIATION, INC., et al., Petitioners, v. FEDERAL MARITIME COMMISSION and United States of America, Respondents, American Trucking Assoc., Inc., American Warehousemen's Assoc., West Gulf Maritime Assoc., National Customs Brokers & Forwarders Association of America, Inc., International Association of NVOCCs, et al., Intervenors. Nos. 82-1347, 87-1370. United States Court of Appeals, District of Columbia Circuit. Argued Dec. 17, 1987. Decided Aug. 9, 1988". Ftp.resource.org. Retrieved 2011-11-28. 
  46. ^ "Public Containerised Transport, ways to improve the efficiency and convenience of travel by intermodalizing automobiles". Nordic Communications Corporation. 4 January 2013. 
  47. ^ "The Box takes off on global journey". BBC News. 2008-09-08. 
  48. ^ "BBC - The Box". BBC. 5 September 2008. Retrieved 2008-09-05. 

Further reading[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Containerization — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
27021 videos foundNext > 

Containerization- Container Revolution

An item used to contain, store, and transport products (for the early history of these items, see pottery), practical examples including Jar, traditionally c...

How containerization shaped the modern world - Sir Harold Evans

View full lesson: http://ed.ted.com/lessons/how-containerization-shaped-the-modern-world Sometimes a single unlikely idea can have massive impact across the ...

Containerization

This is a short film by MAYA Design created to put some perspective on one of the most powerful yet under appreciated design patterns for large scale resilie...

Logistics 101 - Containerization

Containerization, where do it come from? Watch in HD for Best Results!

Containerization (Malcom McLean)

Containerization, animated by Marc Strong for http://sunnibrown.com. Created for TED-ED.

The Waves of Containerization: Shifts in Global Maritime Transportation

Jean-Paul Rodrigue received a Ph.D. in Transport Geography from the Université de Montréal (1994) and has been a professor at Hofstra University since 1999...

COMMUNITAKE Mobile Containerization

Businesses are facing serious security challenges as workers view sensitive business data from their mobile devices, especially in BYOD programs. COMMUNITAKE...

Cluster Management and Containerization by Benjamin Hindman From Twitter

Benjamin Hindman, co-founder of Apache Mesos talks about Cluster Management and Containerization at Twitter. There is a revolution afoot in distributed compu...

2014 #vBrownBag OpenStack Summit Atlanta Keith Tobin Openstack service containerization

This talk presents a architectural solution for Openstack infrastructure through containerizing the Openstack services such as keystone, glance, cinder, ect....

Komatsu WA380 Containerization

Video of Big Iron, Inc containerizing Komatsu WA380 in Jacksonville, FL. This video has been taken at our previous shipping location. Visit us at www.bigiron...

27021 videos foundNext > 

172 news items

 
Space Ref (press release)
Wed, 16 Jul 2014 09:07:30 -0700

This notice is a Request for Information (RFI) and is not a Request for Proposal (RFP). The Government will not award a contract on the basis of this notice, or otherwise pay for information solicited by it. Proprietary information should be clearly ...
 
Shanghai Daily (subscription)
Thu, 10 Jul 2014 21:18:45 -0700

YANGON, July 11 (Xinhua) -- Myanmar has draft an action plan for the development of dry ports and containerization of rail transport to ensure free flow of goods and provide new opportunities for international trade before implementation of the ASEAN ...
 
FedTech Magazine
Fri, 25 Jul 2014 03:30:00 -0700

One solution is containerization: creating barriers in the device that separate corporate data from private information. With containers, enterprise apps have their own encrypted storage, separating and securing organizational data from unauthorized ...
 
TechTarget
Thu, 31 Jul 2014 07:09:56 -0700

MCM and the containerization of sensitive data should take center stage in almost every EMM strategy. Evaluate EMM features: EMM products can range from do-it-all suites to point products that are perfect for a specific situation. A custom-assembled ...
 
Broadway World
Tue, 29 Jul 2014 06:52:30 -0700

Vaultize now includes Mobile Device Management (MDM) features such as remote wipe, data containerization, storage and network encryption, PIN protection and white-listing of apps for mitigation of security and protection concerns with BYOD. Vaultize ...
 
MobileSyrup.com
Wed, 30 Jul 2014 06:36:56 -0700

Folders; improved Xbox Music; SMS merging; app containerization; better VPN support; and a snazzy new Windows Store Live Tile. First, folders: while Nokia devices have, since Windows Phone 8, the option to use an app, called App Folders, to group ...
 
Java World
Tue, 29 Jul 2014 13:09:40 -0700

It's all but impossible to speak of orchestration or management these days without also mentioning Docker, so I asked if one of the possible future directions for their contributions to Ambari would involve that software-containerization system ...

ZDNet

ZDNet
Tue, 29 Jul 2014 11:50:30 -0700

But unlike most businesses, the GSFC has taken the approach of a public request, under the name Data Efficiency and Containerization, for information on three main approaches that they believe can solve the datacenter growth needs.
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Containerization

You can talk about Containerization with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!