digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Chinese hamster ovary (CHO) cells are a cell line derived from the ovary of the Chinese hamster, often used in biological and medical research and commercially in the production of therapeutic proteins.[1] They were introduced in the 1960s, are grown as a cultured monolayer and require the amino acid proline in their culture medium.

CHO cells are used in studies of genetics, toxicity screening, nutrition and gene expression, particularly to express recombinant proteins. Today, CHO cells are the most commonly used mammalian hosts for industrial production of recombinant protein therapeutics.

History[edit]

The use of the Chinese hamster in research began in 1919 where they were used in place of mice for typing pneumococci. They were subsequently found to be excellent vectors for transmission of kala-azar (a.k.a. visceral leishmaniasis), facilitating research in epidemiology.

In 1948, the Chinese hamster was brought to the United States for breeding in research laboratories. In the following years, the Chinese hamster became noteworthy for the cell lines that were derived from its tissues. Having a very low chromosome number (2n=22) for a mammal, the Chinese hamster is an ideal model for radiation cytogenetics and tissue culture.[2]

In 1957, Theodore T. Puck obtained a female Chinese hamster from Dr. George Yerganian's laboratory at the Boston Cancer Research Foundation and used it to derive the original Chinese hamster ovary (CHO) cell line. Since then, CHO cells have been a cell line of choice because of their rapid growth and high protein production. They have become the mammalian equivalent of E. coli in research and biotechnology today, especially when long-term, stable gene expression and high yields of proteins are required.

Properties[edit]

CHO cells do not express the Epidermal growth factor receptor (EGFR), which makes them ideal in the investigation of various EGFR mutations.[3]

The first CHO cell line was derived from the original cell lines in Dr. Puck's laboratory through single cell cloning in 1957[4] CHO-K1 was later derived from this ancestral cell line,[5] and it contains a slightly lower amount of DNA than the original CHO. CHO-K1 was mutagenized to generate CHO-DXB11 (also referred to as CHO-DUKX), a cell line lacking DHFR activity.[6] These cells have a deletion of one dhfr allele and a Missense mutation in the other. Subsequently, the proline-dependent CHO-pro3- strain, another derivative of the original CHO cell line, was mutagenized to yield CHO-DG44, a cell line with deletions of both dhfr alleles.[7] These two DHFR-minus strains require glycine, hypoxanthine, and thymidine (GHT) for growth. Although not initially intended for recombinant protein manufacture, DHFR-minus CHO cells were used for a number of pioneering experiments demonstrating stable transfection with an exogenous dhfr gene via selection in GHT-minus medium.[8] This genetic selection scheme remains one of the standard methods to establish stably transfected CHO cell lines for the production of recombinant therapeutic proteins. The multistep process begins with the molecular cloning of the gene of interest (GOI) and the dhfr gene in a single or in separate mammalian expression vectors. The plasmid DNA(s) carrying the two genes are then delivered into cells by transfection, and the cells are grown under selective conditions in GHT-minus medium. Each surviving cell will have one or more copies of the exogenous dhfr gene, usually along with the GOI, integrated in its genome.[9] The integrated plasmid copy number varies widely from one recombinant cell to another, but there is almost always only one integration site per cell even if multiple plasmids are transfected.[10] The growth rate and the level of recombinant protein production of each cell line also vary widely. To obtain a few stably transfected cell lines with the desired phenotypic characteristics, it may be necessary to evaluate several hundred candidate cell lines.

The CHO and CHO-K1 cell lines can be obtained from a number of biological resource centres such as the European Collection of Cell Cultures (ECACC) which is part of the Health Protection Agency Culture Collections. CHO-K1[11] data, such as growth curves, timelapse videos of growth, images and subculture routine information are available from ECACC.

See also[edit]

References[edit]

  1. ^ Jayapal K. P., Wlaschin K. F., Yap M. G. S., Hu W-S., (2007). "Recombinant protein therapeutics from CHO cells — 20 years and counting.". Chem. Eng. Prog. 103 (10): 40–47. 
  2. ^ Tjio J. H., Puck T. T., (1958). "Genetics of somatic mammalian cells. II. chromosomal constitution of cells in tissue culture.". J. Exp. Med. 108: 259–271. doi:10.1084/jem.108.2.259. PMC 2136870. PMID 13563760. 
  3. ^ Ahsan, A., S. M. Hiniker, M. A. Davis, T. S. Lawrence, and M. K. Nyati. "Role of Cell Cycle in Epidermal Growth Factor Receptor Inhibitor-Mediated Radiosensitization." Cancer Research 69.12 (2009): 5108-114. Print.
  4. ^ Wurm FM, Hacker D. "First CHO genome." Nat Biotechnol 2011;29(8):718–20.
  5. ^ Lewis, NE, et al. "Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome." Nat Biotechnol 31, 759–765 (2013). doi: 10.1038/nbt.2624
  6. ^ (Urlaub and Chasin, 1980)
  7. ^ (Urlaub et al., 1983)
  8. ^ (Ringold et al., 1981; Kaufman and Sharp, 1982; Scahill et al., 1983)
  9. ^ (Ringold et al., 1981; Kaufman and Sharp, 1982; Scahill et al., 1983)
  10. ^ (Wurm 1990)
  11. ^ "General Cell Collection: CHO-K1". Hpacultures.org.uk. 2000-01-01. Retrieved 2013-05-21. 

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Chinese_hamster_ovary_cell — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
44 videos foundNext > 

ZEISS ELYRA: 3D superresolution imaging of Chinese Hamster Ovary (CHO) cells

CHO cells (Chinese Hamster Ovary cells), CEP152 (centriolar protein) (secondary antibody system conjugated to Alexa 647), 10 ms / frame. Courtesy of T. Klein...

Production Of Therapeutic Glycoproteins : Competitor and Patent Landscape Report

About the Report: The majority of clinically approved protein drugs bear some form of post-translational modification, most commonly glycosylation. Glycosyla...

B&B: Construction of BAC-based physical map & analysis of chromosome rearrangement in CHO cell lines

Video Abstract from author Takeshi Omasa on his recently published B&B paper entitled "Construction of BAC-based physical map and analysis of chromosome rear...

The Hamster: An Unexpected Journey Into Drug Manufacturing

An Ignite talk at Sheffield University on the history of the Chinese Hamster Ovary (CHO) cell line and a brief overview on manufacturing recombinant proteins...

CHO Cell Cloning Procedure: Semi-Solid Cloning with ClonaCell™-CHO

Cloning CHO cells using semi-solid cell culture media is an efficient cell line development method. This video outlines the ClonaCell™-CHO procedure for semi...

Optical Transfection

Femtosecond laser pulses are used to optically introduce genetic material and nanoparticles into mammalian cells. In this video the beam is used to photo-tra...

Why Girls Are Entering Puberty Earlier Than Ever

DNews Audience Survey http://dne.ws/1dLMDtq Girls entering puberty earlier than usual is a problem first spotted nearly two decades ago. But the problem is s...

Remicade (infliximab) first time using Remicade Infusion

first time using Remicade Infusion, Remicade uses human and mouse proteins to create a chimeric monoclonal antibody. Enbrel is derived by introducing human D...

Fluorescence Imaging of Eukaryotic Endoplasmic Reticulum

This video shows a brief, real time stream of a live Chinese hamster ovary (CHO) cell treated with a special fluorescent dye known as a squaraine rotaxane. T...

Pittcon 2013 - Pittsburgh Analytical Chemistry Award - Abstract 7

This session was recorded during Pittcon 2013 in Philadelphia, Pennsylvania on Tuesday, March 19, 2013. TITLE: Engineering Single-Cell Bioanalytics for Strai...

44 videos foundNext > 

1 news items

 
Insurance News Net
Wed, 09 Jul 2014 07:35:49 -0700

2013) Standard guide for performance of the Chinese hamster ovary cell/hypoxanthine guanine phosphoribosyl transferase gene mutation assay 2-141 ASTM F1984-99 (Reapproved Reaffirmation. 2013) Standard practice for testing for whole complement ...
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Chinese hamster ovary cell

You can talk about Chinese hamster ovary cell with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!