digplanet beta 1: Athena
Share digplanet:


Applied sciences






















For other uses of "Celestial", see Celestial (disambiguation). For the journal, see Celestial Mechanics and Dynamical Astronomy.

Celestial mechanics is the branch of astronomy that deals with the motions of celestial objects. Historically, celestial mechanics applies principles of physics (classical mechanics) to astronomical objects, such as stars and planets, to produce ephemeris data. As an astronomical field of study, celestial mechanics includes the sub-fields of Orbital mechanics (astrodynamics), which deals with the orbit of an artificial satellite; and Lunar theory, which deals with the orbit of the Moon.

History of celestial mechanics[edit]

For early theories of the causes of planetary motion, see Dynamics of the celestial spheres.

Modern analytic celestial mechanics started over 300 years ago with Isaac Newton's Principia of 1687. The name "celestial mechanics" is more recent than that. Newton wrote that the field should be called "rational mechanics." The term "dynamics" came in a little later with Gottfried Leibniz, and over a century after Newton, Pierre-Simon Laplace introduced the term "celestial mechanics." Prior to Kepler there was little connection between exact, quantitative prediction of planetary positions, using geometrical or arithmetical techniques, and contemporary discussions of the physical causes of the planets' motion.

Johannes Kepler[edit]

For detailed treatments of how his laws of planetary motion can be used, see Kepler's laws of planetary motion and Keplerian problem.

Johannes Kepler (1571–1630) was the first to closely integrate the predictive geometrical astronomy, which had been dominant from Ptolemy in the 2nd century to Copernicus, with physical concepts to produce a New Astronomy, Based upon Causes, or Celestial Physics in 1609. His work led to the modern laws of planetary orbits, which he developed using his physical principles and the planetary observations made by Tycho Brahe. Kepler's model greatly improved the accuracy of predictions of planetary motion, years before Isaac Newton developed his law of gravitation in 1686.

Isaac Newton[edit]

Isaac Newton (25 December 1642–31 March 1727) is credited with introducing the idea that the motion of objects in the heavens, such as planets, the Sun, and the Moon, and the motion of objects on the ground, like cannon balls and falling apples, could be described by the same set of physical laws. In this sense he unified celestial and terrestrial dynamics. Using Newton's law of universal gravitation, proving Kepler's Laws for the case of a circular orbit is simple. Elliptical orbits involve more complex calculations, which Newton included in his Principia.

Joseph-Louis Lagrange[edit]

After Newton, Lagrange (25 January 1736–10 April 1813) attempted to solve the three-body problem, analyzed the stability of planetary orbits, and discovered the existence of the Lagrangian points. Lagrange also reformulated the principles of classical mechanics, emphasizing energy more than force and developing a method to use a single polar coordinate equation to describe any orbit, even those that are parabolic and hyperbolic. This is useful for calculating the behaviour of planets and comets and such. More recently, it has also become useful to calculate spacecraft trajectories.

Simon Newcomb[edit]

Simon Newcomb (12 March 1835–11 July 1909) was a Canadian-American astronomer who revised Peter Andreas Hansen's table of lunar positions. In 1877, assisted by George William Hill, he recalculated all the major astronomical constants. After 1884, he conceived with A. M. W. Downing a plan to resolve much international confusion on the subject. By the time he attended a standardisation conference in Paris, France in May 1886, the international consensus was that all ephemerides should be based on Newcomb's calculations. A further conference as late as 1950 confirmed Newcomb's constants as the international standard.

Albert Einstein[edit]

Albert Einstein (14 March 1879–18 April 1955) explained the anomalous precession of Mercury's perihelion in his 1916 paper The Foundation of the General Theory of Relativity. This led astronomers to recognize that Newtonian mechanics did not provide the highest accuracy. Binary pulsars have been observed, the first in 1974, whose orbits not only require the use of General Relativity for their explanation, but whose evolution proves the existence of gravitational radiation, a discovery that led to the 1993 Nobel Physics Prize.

Examples of problems[edit]

Celestial motion without additional forces such as thrust of a rocket, is governed by gravitational acceleration of masses due to other masses. A simplification is the n-body problem, where the problem assumes some number n of spherically symmetric masses. In that case, the integration of the accelerations can be well approximated by relatively simple summations.


In the case that n=2 (two-body problem), the situation is much simpler than for larger n. Various explicit formulas apply, where in the more general case typically only numerical solutions are possible. It is a useful simplification that is often approximately valid.


A further simplification is based on the "standard assumptions in astrodynamics", which include that one body, the orbiting body, is much smaller than the other, the central body. This is also often approximately valid.

  • Solar system orbiting the center of the Milky Way
  • A planet orbiting the Sun
  • A moon orbiting a planet
  • A spacecraft orbiting Earth, a moon, or a planet (in the latter cases the approximation only applies after arrival at that orbit)

Either instead of, or on top of the previous simplification, we may assume circular orbits, making distance and orbital speeds, and potential and kinetic energies constant in time. This assumption sacrifices accuracy for simplicity, especially for high eccentricity orbits which are by definition non-circular.


Perturbation theory[edit]

Perturbation theory comprises mathematical methods that are used to find an approximate solution to a problem which cannot be solved exactly. (It is closely related to methods used in numerical analysis, which are ancient.) The earliest use of perturbation theory was to deal with the otherwise unsolveable mathematical problems of celestial mechanics: Newton's solution for the orbit of the Moon, which moves noticeably differently from a simple Keplerian ellipse because of the competing gravitation of the Earth and the Sun.

Perturbation methods start with a simplified form of the original problem, which is carefully chosen to be exactly solvable. In celestial mechanics, this is usually a Keplerian ellipse, which is correct when there are only two gravitating bodies (say, the Earth and the Moon), or a circular orbit, which is only correct in special cases of two-body motion, but is often close enough for practical use. The solved, but simplified problem is then "perturbed" to make its starting conditions closer to the real problem, such as including the gravitational attraction of a third body (the Sun). The slight changes that result, which themselves may have been simplified yet again, are used as corrections. Because of simplifications introduced along every step of the way, the corrections are never perfect, but even one cycle of corrections often provides a remarkably better approximate solution to the real problem.

There is no requirement to stop at only one cycle of corrections. A partially corrected solution can be re-used as the new starting point for yet another cycle of perturbations and corrections. The common difficulty with the method is that usually the corrections progressively make the new solutions very much more complicated, so each cycle is much more difficult to manage than the previous cycle of corrections. Newton is reported to have said, regarding the problem of the Moon's orbit "It causeth my head to ache."[1]

This general procedure – starting with a simplified problem and gradually adding corrections that make the starting point of the corrected problem closer to the real situation – is a widely used mathematical tool in advanced sciences and engineering. It is the natural extension of the "guess, check, and fix" method used anciently with numbers.

See also[edit]

  • Astrometry is a part of astronomy that deals with measuring the positions of stars and other celestial bodies, their distances and movements.
  • Astrodynamics is the study and creation of orbits, especially those of artificial satellites.
  • Celestial navigation is a position fixing technique that was the first system devised to help sailors locate themselves on a featureless ocean.
  • Dynamics of the celestial spheres concerns pre-Newtonian explanations of the causes of the motions of the stars and planets.
  • Gravitation
  • Numerical analysis is a branch of mathematics, pioneered by celestial mechanicians, for calculating approximate numerical answers (such as the position of a planet in the sky) which are too difficult to solve down to a general, exact formula.
  • Creating a numerical model of the solar system was the original goal of celestial mechanics, and has only been imperfectly achieved. It continues to motivate research.
  • An orbit is the path that an object makes, around another object, whilst under the influence of a source of centripetal force, such as gravity.
  • Orbital elements are the parameters needed to specify a Newtonian two-body orbit uniquely.
  • Osculating orbit is the temporary Keplerian orbit about a central body that an object would continue on, if other perturbations were not present.
  • Retrograde motion
  • Satellite is an object that orbits another object (known as its primary). The term is often used to describe an artificial satellite (as opposed to natural satellites, or moons). The common noun moon (not capitalized) is used to mean any natural satellite of the other planets.
  • Tidal force
  • The Jet Propulsion Laboratory Developmental Ephemeris (JPL DE) is a widely used model of the solar system, which combines celestial mechanics with numerical analysis and astronomical and spacecraft data.
  • Two solutions, called VSOP82 and VSOP87 are versions one mathematical theory for the orbits and positions of the major planets, which seeks to provide accurate positions over an extended period of time.
  • Lunar theory attempts to account for the motions of the Moon.


  1. ^ Cropper, William H. (2004), Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking, Oxford University Press, p. 34, ISBN 978-0-19-517324-6 .


Further reading[edit]

External links[edit]

  • Calvert, James B. (2003-03-28), Celestial Mechanics, University of Denver, retrieved 2006-08-21 
  • Astronomy of the Earth's Motion in Space, high-school level educational web site by David P. Stern
  • Newtonian Dynamics Undergraduate level course by Richard Fitzpatrick. This includes Langrangian and Hamiltonian Dynamics and applications to celestial mechanics, gravitational potential theory, the 3-body problem and Lunar motion (an example of the 3-body problem with the Sun, Moon, and the Earth).



Course notes



Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Celestial_mechanics — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
81816 videos foundNext > 

The Devil Wears Prada - Celestial Mechanics

Merch: https://riserecords.merchnow.com/catalogs/the-devil-wears-prada iTunes: http://smarturl.it/tdwp-space.

Celestial Mechanics 01

I have chosen a slightly harsher tone in this video, because this whole December, 21st thing frankly pisses me off. Harnessing the fear an ignorance of people to ...

Celestial Mechanics

This video is an introductory discussion of the Science of Celestial Mechanics. For a text version see: ...

Module 4 / Lecture 1 : Celestial Mechanics

The Copernican Revolution and Kepler's Laws.

Sonic Entity - Celestial Mechanics (Original Mix)

HELP ARTISTS... BUY THEIR ORIGINAL DISK! Download: http://www.psyshop.com/shop/CDs/ovn/ovn2cd084.html.


Whats the secret ? NOT EXCESSIVE FORCE. simplify the complex. I came very close to deleting this vid due to my imperfections within it but im glad I didnt.

Loopmoon - Celestial Mechanics [Full EP]

http://www.ektoplazm.com/free-music/loopmoon-celestial-mechanics 01 - Brahma Experience (90 BPM) 0:00 02 - Pipal (100 BPM) 8:29 03 - Solar Maximum ...

Sonic Entity - Celestial Mechanics [Mundo Progresivo]

http://www.beatport.com/release/mundo-progresivo-by-lupin/1157207 https://www.psyshop.com/shop/CDs/ovn/ovn2cd064.html.

George Crumb: Celestial Mechanics I. Alpha Centauri

Hsing-ay Hsu and David Korevaar, piano. Anthony Green, piano. Performed at the University of Colorado's George Crumb Festival. For more information visit ...

Celestial Mechanics by Dave Davies and Alakazam Magic

Available from http://www.world-of-magic.co.uk "The name David Davies is well known in the underground card scene." - Alakazam Celestial Mechanics tecahes ...

81816 videos foundNext > 

683 news items

Wall Street Journal

Wall Street Journal
Fri, 20 Nov 2015 11:30:51 -0800

Before Einstein, Isaac Newton's theory of gravity dominated celestial mechanics. But during the 1800s, Newton's theory seemed to stumble once or twice. One stumble involved Uranus, then the farthest-known planet from the sun. Based on the gravitational ...

SpaceFlight Insider

SpaceFlight Insider
Fri, 06 Nov 2015 03:16:48 -0800

He has written several books on orbital mechanics including Fly Me to the Moon, and Capture Dynamics and Chaotic Motions in Celestial Mechanics. He is also a consultant working with NASA. This story was produced for The Lunar Initiatives newsletter ...


Sat, 07 Nov 2015 16:01:12 -0800

Even galaxies can get locked in destructive relationships. 70 million light years from Earth in the direction of the Sextans constellation, the two cosmic behemoths pictured here are pulling each other apart, spiral arms fraying into sweeping tidal ...

Sydney Morning Herald

Sydney Morning Herald
Wed, 28 Oct 2015 02:03:06 -0700

... somehow affected human lives. "That is why he devoted his efforts to developing more precise mathematical calculations of planetary orbits," Dr Soria said. Today scientists know that is not the case – although much of our knowledge of celestial ...

Scientific American (blog)

Scientific American (blog)
Thu, 20 Oct 2011 04:06:01 -0700

Sitting below the swirling leaves and darkening skies of New York today I realized that yet again our planet is roaring up on perihelion at 30 kilometers a second. This means that in about three weeks those of us in the United States will be shifting ...
The New American
Sun, 26 Dec 2010 22:11:38 -0800

December 27 marks the birthday of the Father of Celestial Mechanics, Johannes Kepler. Born in 1571, he went on to become one of the most important scientists in the field of astronomy as the first person to explain the laws of planetary motion. He also ...

National Geographic

National Geographic
Fri, 25 Sep 2015 07:48:45 -0700

Now that science has explained the celestial mechanics at play, we can all simply enjoy the cosmic mechanics. (See lunar eclipse myths from around the world.) This week's eclipse is even more special because the lunar disk will appear slightly larger ...


Thu, 03 Sep 2015 15:29:45 -0700

In the five-minute video clip below, Mike Hranica from THE DEVIL WEARS PRADA explains the story behind the second two songs on the band's "Space" EP: "Moongod'" and "Celestial Mechanics". THE DEVIL WEARS PRADA's first official release since 2013 ...

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight