digplanet beta 1: Athena
Share digplanet:


Applied sciences






















For other uses, see Biomechanical (disambiguation).
Page of one of the first works of Biomechanics (De Motu Animalium of Giovanni Alfonso Borelli)

Biomechanics is the study of the structure and function of biological systems such as humans, animals, plants, organs, and cells[1] by means of the methods of mechanics.[2]

Word history[edit]

The word "biomechanics" (1899) and the related "biomechanical" (1856) were coined by Nikolai Bernstein[citation needed] from the Ancient Greek words βίος bios "life" and μηχανική, mēchanikē "mechanics", to refer to the study of the mechanical principles of living organisms, particularly their movement and structure.[3]


Biomechanics is closely related to engineering, because it often uses traditional engineering sciences to analyze biological systems. Some simple applications of Newtonian mechanics and/or materials sciences can supply correct approximations to the mechanics of many biological systems. Applied mechanics, most notably mechanical engineering disciplines such as continuum mechanics, mechanism analysis, structural analysis, kinematics and dynamics play prominent roles in the study of biomechanics.

Usually biological systems are much more complex than man-built systems. Numerical methods are hence applied in almost every biomechanical study. Research is done in an iterative process of hypothesis and verification, including several steps of modeling, computer simulation and experimental measurements.


Applied subfields of biomechanics include:

Sports biomechanics[edit]

Main article: Sports biomechanics

In sports biomechanics, the laws of mechanics are applied to human movement in order to gain a greater understanding of athletic performance and to reduce sport injuries as well. Elements of mechanical engineering (e.g., strain gauges), electrical engineering (e.g., digital filtering), computer science (e.g., numerical methods), gait analysis (e.g., force platforms), and clinical neurophysiology (e.g., surface EMG) are common methods used in sports biomechanics.[4]

Biomechanics in sports, can be stated as the muscular, joint and skeletal actions of the body during the execution of a given task, skill and/or technique. Proper understanding of biomechanics relating to sports skill has the greatest implications on: sport's performance, rehabilitation and injury prevention, along with sport mastery. As noted by Doctor Michael Yessis, one could say that best athlete is the one that executes his or her skill the best.[5]

Continuum biomechanics[edit]

The mechanical analysis of biomaterials and biofluids is usually carried forth with the concepts of continuum mechanics. This assumption breaks down when the length scales of interest approach the order of the micro structural details of the material. One of the most remarkable characteristic of biomaterials is their hierarchical structure. In other words, the mechanical characteristics of these materials rely on physical phenomena occurring in multiple levels, from the molecular all the way up to the tissue and organ levels.

Biomaterials are classified in two groups, hard and soft tissues. Mechanical deformation of hard tissues (like wood, shell and bone) may be analysed with the theory of linear elasticity. On the other hand, soft tissues (like skin, tendon, muscle and cartilage) usually undergo large deformations and thus their analysis rely on the finite strain theory and computer simulations. The interest in continuum biomechanics is spurred by the need for realism in the development of medical simulation.[6]:568

Biofluid mechanics[edit]

Biological fluid mechanics, or biofluid mechanics, is the study of both gas and liquid fluid flows in or around biological organisms. An often studied liquid biofluids problem is that of blood flow in the human cardiovascular system. Under certain mathematical circumstances, blood flow can be modelled by the Navier–Stokes equations. In vivo whole blood is assumed to be an incompressible Newtonian fluid. However, this assumption fails when considering forward flow within arterioles. At the microscopic scale, the effects of individual red blood cells become significant, and whole blood can no longer be modelled as a continuum. When the diameter of the blood vessel is just slightly larger than the diameter of the red blood cell the Fahraeus–Lindquist effect occurs and there is a decrease in wall shear stress. However, as the diameter of the blood vessel decreases further, the red blood cells have to squeeze through the vessel and often can only pass in single file. In this case, the inverse Fahraeus–Lindquist effect occurs and the wall shear stress increases.

An example of a gaseous biofluids problem is that of human respiration. Recently, respiratory systems in insects have been studied for bioinspiration for designing improved microfluidic devices.[7]


The main aspects of Contact mechanics & tribology are related to friction, wear and lubrication. When the two surfaces come in contact during motion i.e. rub against each other, friction, wear and lubrication effects are very important to analyze in order to determine the performance of the material. Biotribology is a study of friction, wear and lubrication of biological systems especially human joints such as hips and knees. For example, femoral and tibial components of knee implant routinely rub against each other during daily activity such as walking or stair climbing. If the performance of tibial component needs to be analyzed, the principles of biotribology are used to determine the wear performance of the implant and lubrication effects of synovial fluid. In addition, the theory of contact mechanics also becomes very important for wear analysis.

Comparative biomechanics[edit]

Chinstrap Penguin leaping over water

Comparative biomechanics is the application of biomechanics to non-human organisms, whether used to gain greater insights into humans (as in physical anthropology) or into the functions, ecology and adaptations of the organisms themselves. Common areas of investigation are Animal locomotion and feeding, as these have strong connections to the organism's fitness and impose high mechanical demands. Animal locomotion, has many manifestations, including running, jumping and flying. Locomotion requires energy to overcome friction, drag, inertia, and gravity, though which factor predominates varies with environment.[citation needed]

Comparative biomechanics overlaps strongly with many other fields, including ecology, neurobiology, developmental biology, ethology, and paleontology, to the extent of commonly publishing papers in the journals of these other fields. Comparative biomechanics is often applied in medicine (with regards to common model organisms such as mice and rats) as well as in biomimetics, which looks to nature for solutions to engineering problems.

Plant biomechanics[edit]

The application of biomechanical principles to plants and plant organs has developed into the subfield of plant biomechanics.[8]

Computational biomechanics[edit]

Over the past decade the Finite element method has become an established alternative to in vivo surgical assessment. The main advantage of Computational Biomechanics lies in its ability to determine the endo-anatomical response of an anatomy, without being subject to ethical restrictions.[9] This has led FE modelling to the point of becoming ubiquitous in several fields of Biomechanics while several projects have even adopted an open source philosophy (e.g. BioSpine).

Injury Biomechanics[edit]



Aristotle wrote the first book on the motion of animals, De Motu Animalium, or On the Movement of Animals.[10] He not only saw animals' bodies as mechanical systems, but pursued questions such as the physiological difference between imagining performing an action and actually doing it.[11] In another work, On the Parts of Animals, he provided an accurate description of how the ureter uses peristalsis to carry blood from the kidneys to the bladder.[6]:2


Probably Leonardo da Vinci could be recognized as the first true biomechanist,[according to whom?] because he was the first to study anatomy in the context of mechanics. He analyzed muscle forces as acting along lines connecting origins and insertions and studied joint function. He also intended to mimic some animal features in his machines. For example, he studied the flight of birds to find means by which humans could fly. Because horses were the principal source of mechanical power in that time, he studied their muscular systems to design machines that would better benefit from the forces applied by this animal.[12]

Galileo Galilei was interested in the strength of bones and suggested that bones are hollow for this affords maximum strength with minimum weight. He noted that animals' masses increase disproportionately to their size, and their bones must consequently also disproportionately increase in girth, adapting to loadbearing rather than mere size the bending strength of a tubular structure such as a bone is increased relative to its weight. This surely was one of the first grasps of principles of biological optimization.[12]

In the 16th century, Descartes suggested a philosophic system whereby all living systems, including the human body (but not the soul), are simply machines ruled by the same mechanical laws, an idea that did much to promote and sustain biomechanical study. Giovanni Alfonso Borelli embraced this idea and studied walking, running, jumping, the flight of birds, the swimming of fish, and even the piston action of the heart within a mechanical framework. He could determine the position of the human center of gravity, calculate and measured inspired and expired air volumes, and showed that inspiration is muscle-driven and expiration is due to tissue elasticity. Borelli was the first to understand that the levers of the musculoskeletal system magnify motion rather than force, so that muscles must produce much larger forces than those resisting the motion. Influenced by the work of Galileo, whom he personally knew, he had an intuitive understanding of static equilibrium in various joints of the human body well before Newton published the laws of motion.[13]

Industrial era[edit]

In the 19th century Étienne-Jules Marey used cinematography to scientifically investigate locomotion. He opened the field of modern 'motion analysis' by being the first to correlate ground reaction forces with movement. In Germany, the brothers Ernst Heinrich Weber and Wilhelm Eduard Weber hypothesized a great deal about human gait, but it was Christian Wilhelm Braune who significantly advanced the science using recent advances in engineering mechanics. During the same period, the engineering mechanics of materials began to flourish in France and Germany under the demands of the industrial revolution. This led to the rebirth of bone biomechanics when the railroad engineer Karl Culmann and the anatomist Hermann von Meyer compared the stress patterns in a human femur with those in a similarly shaped crane. Inspired by this finding Julius Wolff proposed the famous Wolff's law of bone remodeling.[14]


The study of biomechanics ranges from the inner workings of a cell to the movement and development of limbs, to the mechanical properties of soft tissue, and bones. Some simple examples of biomechanics research include the investigation of the forces that act on limbs, the aerodynamics of bird and insect flight, the hydrodynamics of swimming in fish, and locomotion in general across all forms of life, from individual cells to whole organisms. The biomechanics of human beings is a core part of kinesiology. As we develop a greater understanding of the physiological behavior of living tissues, researchers are able to advance the field of tissue engineering, as well as develop improved treatments for a wide array of pathologies.

Biomechanics is also applied to studying human musculoskeletal systems. Such research utilizes force platforms to study human ground reaction forces and infrared videography to capture the trajectories of markers attached to the human body to study human 3D motion. Research also applies electromyography[15] (EMG) system to study the muscle activation. By this, it is feasible to investigate the muscle responses to the external forces as well as perturbations.

Biomechanics is widely used in orthopedic industry to design orthopedic implants for human joints, dental parts, external fixations and other medical purposes. Biotribology is a very important part of it. It is a study of the performance and function of biomaterials used for orthopedic implants. It plays a vital role to improve the design and produce successful biomaterials for medical and clinical purposes.

Scientific journals[edit]

Among the journals devoted to biomechanics are the following:[16][17]


The following societies include the international societies and their affiliates:[18][19]

  • American Society of Biomechanics
  • Australian and New Zealand Society of Biomechanics
  • Brazilian Society of Biomechanics
  • British Association of Sport and Exercise Sciences
  • Bulgarian Society of Biomechanics
  • Canadian Society for Biomechanics
  • Chinese Society of Sports Biomechanics
  • Czech Society of Biomechanics
  • Danish Society of Biomechanics
  • European Society of Biomechanics
  • German Society of Biomechanics
  • Hellenic Society of Biomechanics
  • International Society of Biomechanics
  • International Society of Biomechanics in Sports
  • Japanese Society of Biomechanics
  • Korean Society for Orthopaedic Research, Biomechanics, and Basic Science
  • Polish Society of Biomechanics
  • Portuguese Society of Biomechanics
  • Russian Society of Biomechanics
  • Société de Biomécanique (French speaking countries)
  • Taiwanese Society of Biomechanics


See also[edit]


  1. ^ R. McNeill Alexander (2005) Mechanics of animal movement, Current Biology Volume 15, Issue 16, 23 August 2005, Pages R616-R619.
  2. ^ Hatze, Herbert (1974). "The meaning of the term biomechanics". Journal of Biomechanics 7: 189–190. doi:10.1016/0021-9290(74)90060-8. 
  3. ^ Oxford English Dictionary, Third Edition, November 2010, s.vv.
  4. ^ Bartlett, Roger (1997). Introduction to sports biomechanics (1 ed.). New York, NY: Routledge. p. 304. ISBN 0-419-20840-2. 
  5. ^ Dr. Michael Yessis (2008). Secrets of Russian Sports Fitness & Training. ISBN 978-0-9817180-2-6. 
  6. ^ a b Fung 1993
  7. ^ Aboelkassem, Yasser (2013). "Selective pumping in a network: insect-style microscale flow transport". Bioinspiration & Biomimetics 8 (2): 026004. Bibcode:2013BiBi....8b6004A. doi:10.1088/1748-3182/8/2/026004. 
  8. ^ Niklas, Karl J. (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function (1 ed.). New York, NY: University Of Chicago Press. p. 622. ISBN 0-226-58631-6. 
  9. ^ Tsouknidas, A., Savvakis, S., Asaniotis, Y., Anagnostidis, K., Lontos, A., Michailidis, N. (2013) The effect of kyphoplasty parameters on the dynamic load transfer within the lumbar spine considering the response of a bio-realistic spine segment. Clinical Biomechanics 28 (9-10), pp. 949-955.
  10. ^ Abernethy, Bruce; Vaughan Kippers; Stephanie J. Hanrahan; Marcus G. Pandy; Alison M. McManus; Laurel MacKinnon. Biophysical foundations of human movement (3rd ed.). Champaign, IL: Human Kinetics. p. 84. ISBN 9781450431651. 
  11. ^ Martin, R. Bruce (October 23, 1999). "A genealogy of biomechanics". Presidential Lecture presented at the 23rd Annual Conference of the American Society of Biomechanics University of Pittsburgh, Pittsburgh PA. Retrieved 2 January 2014. 
  12. ^ a b Mason, Stephen (1962). A History of the Sciences. New York, NY: Collier Books. p. 550. 
  13. ^ Humphrey, Jay D. (2003). "Continuum biomechanics of soft biological tissues". In The Royal Society. Proceedings of the Royal Society of London A 459 (2029): 3–46. Bibcode:2003RSPSA.459....3H. doi:10.1098/rspa.2002.1060. 
  14. ^ R. Bruce Martin (23 October 1999). "A Genealogy of Biomechanics". 23rd Annual Conference of the American Society of Biomechanics. Retrieved 13 October 2010. 
  15. ^ Basmajian, J.V, & DeLuca, C.J. (1985) Muscles Alive: Their Functions Revealed, Fifth edition. Williams & Wilkins Publ.
  16. ^ "Journals". Information services. International Society of Biomechanics. Retrieved 3 January 2014. 
  17. ^ "Ulrichsweb Global Serials Directory". Retrieved January 2013. 
  18. ^ "ISB affiliate societies". International Society of Biomechanics. Retrieved 3 January 2014. 
  19. ^ "Affiliates". European Society of Biomechanics. Retrieved 3 January 2014. 

Further reading[edit]

  • Cowin, Stephen C., ed. (2008). Bone mechanics handbook (2nd ed.). New York: Informa Healthcare. ISBN 0-8493-9117-2. 
  • Fischer-Cripps, Anthony C. (2007). Introduction to contact mechanics (2nd ed.). New York: Springer. ISBN 0-387-68187-6. 
  • Fung, Y.-C. (1993). Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag. ISBN 0-387-97947-6. 
  • Gurtin, Morton E. (1995). An introduction to continuum mechanics (6. [Dr.]. ed.). San Diego: Acad. Press. ISBN 978-0123097507. 
  • Humphrey, Jay D. (2002). Cardiovascular solid mechanics : cells, tissues, and organs. New York: Springer. ISBN 0-387-95168-7. 
  • Mazumdar, Jagan N. (1993). Biofluids mechanics (Reprint 1998. ed.). Singapore: World Scientific. ISBN 981-02-0927-4. 
  • Mow, Van C.; Huiskes, Rik, eds. (2005). Basic orthopaedic biomechanics & mechano-biology (3 ed.). Philadelphia: Lippincott, Williams & Wilkins. p. 2. ISBN 9780781739337. 
  • Peterson, Donald R.; Bronzino, Joseph D., eds. (2008). Biomechanics : principles and applications (2. rev. ed.). Boca Raton: CRC Press. ISBN 0-8493-8534-2. 
  • Temenoff, J.S.; Mikos, A.G. (2008). Biomaterials : the Intersection of biology and materials science (Internat. ed.). Upper Saddle River, N.J.: Pearson/Prentice Hall. ISBN 978-0-13-009710-1. 
  • Totten, George E.; Liang, Hong, eds. (2004). Mechanical tribology : materials, characterization, and applications. New York: Marcel Dekker. ISBN 978-0824748739. 
  • Waite, Lee; Fine, Jerry (2007). Applied biofluid mechanics. New York: McGraw-Hill. ISBN 0-07-147217-7. 
  • Young, Donald F.; Bruce R. Munson; Theodore H. Okiishi (2004). A brief introduction to fluid mechanics (3rd ed.). Hoboken, N.J.: Wiley. ISBN 0-471-45757-4. 

External links[edit]

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Biomechanics — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
127176 videos foundNext > 

Built by Science - Anatomy, Biomechanics, & 6 Week Training Program - Legs - Bodybuilding.com

Check out the full plan here: http://bbcom.me/1e3Yuql The body is a work of art. It's yours to create. Built by Science will teach you anatomy, biomechanics,...

Biomechanics of the Body - Levers

This program looks at the physics of human movement. It begins by examining some of the fundamentals of mechanics, including Newton's laws, types of forces, ...

Biomechanics Lecture

Biomechanical analysis

Biomechanical analysis including motion capture.

Built by Science - Anatomy, Biomechanics, & 6 Week Training Program - Back - Bodybuilding.com

Check out the full plan here: http://bbcom.me/1e3Yuql To more effectively and efficiently train your back, learn how your muscles, bones, and joints work tog...

Built by Science - Anatomy, Biomechanics, & 6 Week Training Program - Shoulders - Bodybuilding.com

Check out the full plan here: http://bbcom.me/1e3Yuql Boulder shoulders look great on any physique, but building them takes know-how. Here's the science you ...

Built by Science - Anatomy, Biomechanics, & 6 Week Training Overview - Bodybuilding.com

Check out the full plan here: http://bbcom.me/1e3Yuql The body is a work of art. It's yours to create. Built by Science will teach you anatomy, biomechanics,...

Built by Science - Anatomy, Biomechanics, & 6 Week Training Program - Arms - Bodybuilding.com

Check out the full plan here: http://bbcom.me/1e3Yuql Killer arms make a good physique great. Look under the hood of your biceps and triceps and learn the be...

Applied Gait Hip Biomechanics, Part 1

Dr. Shawn Allen of The Gait Guys discusses Gait Biomechanics again, this time pure hip biomechanics and how it applies to gait and running and compensation p...

Australian Coaches - Basic Biomechanics

Five important components of biomechanics are featured in this video, including motion, force, momentum, levers and balance. Coaches need to understand these...

127176 videos foundNext > 

936 news items

The Providence Journal
Wed, 09 Jul 2014 06:52:30 -0700

BOSTON, July 9, 2014 /PRNewswire/ -- The John B. Hynes Veterans Memorial Convention Center is packed with attendees to the 7th World Congress of Biomechanics (WCB) now underway in Boston, MA. This is the largest biomechanics conference ever ...

Financial Express

Financial Express
Fri, 25 Jul 2014 22:13:06 -0700

How we hold our arms affects how we run, but probably not in ways that most of us would expect, according to a new study of upper body biomechanics. The ideal arm swing may be the one that you're already using, the study concludes. Distance running is ...


Sun, 13 Jul 2014 17:09:23 -0700

Sports biomechanics is the physics of sports, or how the body performs while playing a sport. This year's conference hosts 250 people from 28 countries and it's a way for sports biomechanic researchers and teachers to bounce new ideas off one another.

Machine Design

Machine Design
Tue, 22 Jul 2014 08:45:00 -0700

In medicine and biomechanics, movements of limbs and other body parts toward or away from the center line of the body (a line that runs up and down the center of the human body) are termed adduction and abduction, respectively. Adduction is the ...
Times of Malta
Sun, 13 Jul 2014 02:45:00 -0700

The University will offer a Master's in clinical biomechanics for the first time in October. This part-time, three-year Master's programme is aimed at healthcare professionals, doctors, engineers and sports scientists. Clinical biomechanics is ...
Tue, 22 Jul 2014 03:52:30 -0700

... Bionics Holdings, Inc. (OTCQB:EKSO), a robotic exoskeleton company, announced today that Kessler Foundation, a global leader in rehabilitation research, has presented preliminary data at World Congress of Biomechanics held in Boston, MA, July 5-10, ...
Thu, 03 Jul 2014 05:11:15 -0700

Female team sport athletes displayed a greater knee valgus than male team sport athletes and male and female dancers, whereas dancers exhibited better trunk stability compared with athletes, according to study results. Researchers recorded kinematics ...
Glenwood Springs Post Independent
Mon, 28 Jul 2014 22:03:45 -0700

Biomechanics/Movement: The way you move has an enormous effect on OA. Proper biomechanics will reduce wear on cartilage. I will argue that your own muscles can be the biggest culprit in causing symptoms like OA. A way to reduce these symptoms is to ...

Oops, we seem to be having trouble contacting Twitter

Talk About Biomechanics

You can talk about Biomechanics with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!