digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Binding energy is the energy that must be exported from a system for the system to enter a bound state at a negative level of energy. Negative energy is called "potential energy".[1] A bound system has a lower (i.e., more negative) potential energy than the sum of its parts—this is what keeps the system aggregated in accordance with the minimum total potential energy principle.

Alternatively, binding energy is the energy required to disgregate a system.

General idea[edit]

In general, binding energy represents the mechanical work that must be done against the forces which hold an object together, disassembling the object into component parts separated by sufficient distance that further separation requires negligible additional work.

At the atomic level the atomic binding energy of the atom derives from electromagnetic interaction and is the energy required to disassemble an atom into free electrons and a nucleus. Electron binding energy is a measure of the energy required to free electrons from their atomic orbits. This is more commonly known as ionization energy.[2]

At the molecular level, bond energy and bond-dissociation energy are measures of the binding energy between the atoms in a chemical bond.

At the nuclear level, binding energy is also equal to the energy liberated when a nucleus is created from other nucleons or nuclei.[3][4] This nuclear binding energy (binding energy of nucleons into a nuclide) is derived from the nuclear force (residual strong interaction) and is the energy required to disassemble a nucleus into the same number of free, unbound neutrons and protons it is composed of, so that the nucleons are far/distant enough from each other so that the nuclear force can no longer cause the particles to interact.[5] Mass excess is a related concept which compares the mass number of a nucleus with its true measured mass.[6]

In astrophysics, the gravitational binding energy of a celestial body is the energy required to expand the material to infinity.

In bound systems, if the binding energy is removed from the system, it must be subtracted from the mass of the unbound system, simply because this energy has mass. Thus, if energy is removed (or emitted) from the system at the time it is bound, the loss of energy from the system will also result in the loss of the mass of the energy, from the system.[7] System mass is not conserved in this process because the system is "open" (i.e., is not an isolated system to mass or energy input or loss) during the binding process.

Mass-energy relation[edit]

Classically a bound system is at a lower energy level than its unbound constituents, and its mass must be less than the total mass of its unbound constituents. For systems with low binding energies, this "lost" mass after binding may be fractionally small. For systems with high binding energies, however, the missing mass may be an easily measurable fraction. This missing mass may be lost during the process of binding as energy in the form of heat or light, with the removed energy corresponding to removed mass through Einstein's equation E = mc2. Note that in the process of binding, the constituents of the system might enter higher energy states of the nucleus/atom/molecule, but these types of energy also have mass, and it is necessary that they be removed from the system before its mass may decrease. Once the system cools to normal temperatures and returns to ground states in terms of energy levels, there is less mass remaining in the system than there was when it first combined and was at high energy. In that case, the removed heat represents exactly the mass "deficit", and the heat itself retains the mass which was lost (from the point of view of the initial system). This mass appears in any other system which absorbs the heat and gains thermal energy.[8]

As an illustration, consider two objects attracting each other in space through their gravitational field. The attraction force accelerates the objects and they gain some speed toward each other converting the potential (gravity) energy into kinetic (movement) energy. When either the particles 1) pass through each other without interaction or 2) elastically repel during the collision, the gained kinetic energy (related to speed), starts to revert into potential form driving the collided particles apart. The decelerating particles will return to the initial distance and beyond into infinity or stop and repeat the collision (oscillation takes place). This shows that the system, which loses no energy, does not combine (bind) into a solid object, parts of which oscillate at short distances. Therefore, in order to bind the particles, the kinetic energy gained due to the attraction must be dissipated (by resistive force). Complex objects in collision ordinarily undergo inelastic collision, transforming some kinetic energy into internal energy (heat content, which is atomic movement), which is further radiated in the form of photons—the light and heat. Once the energy to escape the gravity is dissipated in the collision, the parts will oscillate at closer, possibly atomic, distance, thus looking like one solid object. This lost energy, necessary to overcome the potential barrier in order to separate the objects, is the binding energy. If this binding energy were retained in the system as heat, its mass would not decrease. However, binding energy lost from the system (as heat radiation) would itself have mass, and directly represents the "mass deficit" of the cold, bound system.

Closely analogous considerations apply in chemical and nuclear considerations. Exothermic chemical reactions in closed systems do not change mass, but become less massive once the heat of reaction is removed, though this mass change is much too small to measure with standard equipment. In nuclear reactions, however, the fraction of mass that may be removed as light or heat, i.e., binding energy, is often a much larger fraction of the system mass. It may thus be measured directly as a mass difference between rest masses of reactants and (cooled) products. This is because nuclear forces are comparatively stronger than the Coulombic forces associated with the interactions between electrons and protons, that generate heat in chemistry.

Mass change[edit]

Mass change (decrease) in bound systems, particularly atomic nuclei, has also been termed mass defect, mass deficit, or mass packing fraction.[citation needed]

The difference between the unbound system calculated mass and experimentally measured mass of nucleus (mass change) is denoted by Δm. It can be calculated as follows:

Mass change = (unbound system calculated mass) - (measured mass of system)
i.e., (sum of masses of protons and neutrons) - (measured mass of nucleus)

After nuclear reactions that result in an excited nucleus, the energy that must be radiated or otherwise removed as binding energy for a single nucleus may be in the form of electromagnetic waves, such as gamma radiation, or it may appear in the kinetic energy of an ejected particle, such as an electron, in internal conversion decay. Also, energy of excitation of nucleus can be partly emitted as the rest mass of one or more a particle, such as the emitted particles of beta decay. Again, however, no mass deficit can in theory appear until this radiation or this energy has been emitted, and is no longer part of the system.

When nucleons bind together to form a nucleus, they must lose a small amount of mass, i.e., there is mass change, in order to stay bound. This mass change must be released as various types of photon or other particle energy as above, according to the relation E = mc2. Thus, after binding energy has been removed, binding energy = mass change × c2. This energy is a measure of the forces that hold the nucleons together, and it represents energy which must be supplied again from the environment, if the nucleus were to be broken up into individual nucleons.

The energy given off during either nuclear fusion or nuclear fission is the difference between the binding energies of the "fuel", i.e., the initial nuclide(s), and the fission or fusion products. In practice, this energy may also be calculated from the substantial mass differences between the fuel and products, which uses previous measurement of the atomic masses of known nuclides, which always have the same mass for each species. This mass difference appears once evolved heat and radiation have been removed, which is a given requirement for measuring the (rest) masses of the (non-excited) nuclides involved in such calculations.

See also[edit]

References[edit]

  1. ^ Why is the Potential Energy Negative? HyperPhysics
  2. ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006–) "Ionization energy".
  3. ^ Brittanica Online Encyclopaedia - "nuclear binding energy". Accessed 8 September 2010. http://www.britannica.com/EBchecked/topic/65615/binding-energy
  4. ^ Nuclear Engineering - "Binding Energy". Bill Garland, McMaster University. Accessed 8 September 2010. http://www.nuceng.ca/igna/binding_energy.htm
  5. ^ Atomic Alchemy: Nuclear Processes - "Binding Energy". About. Accessed 7 September 2010. http://library.thinkquest.org/17940/texts/binding_energy/binding_energy.html
  6. ^ Krane, K. S (1987). Introductory Nuclear Physics. John Wiley & Sons. ISBN 0-471-80553-X. 
  7. ^ HyperPhysics - "Nuclear Binding Energy". C.R. Nave, Georgia State University. Accessed 7 September 2010. http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin.html
  8. ^ E. F. Taylor and J. A. Wheeler, Spacetime Physics, W.H. Freeman and Co., NY. 1992. ISBN 0-7167-2327-1, see pp. 248-9 for discussion of mass remaining constant after detonation of nuclear bombs, until heat is allowed to escape.

External links[edit]


Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Binding_energy — Please support Wikipedia.
This page uses Creative Commons Licensed content from Wikipedia. A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
294502 videos foundNext > 

Mass defect and binding energy

How to calculate the mass defect and binding energy for helium-4 More free lessons at: http://www.khanacademy.org/video?v=9b8qZ6OHZ5s.

Binding Energy and Fission

This movie is part of the collection: Prelinger Archives Producer: Sutherland (John) Productions Sponsor: General Electric Company http://www.stmary.ws/highs...

E=MC^2, Binding Energy and Mass Defect

http://www.aklectures.com/lecture/e-mc-2-binding-energy-and-mass-defect The website organizes the videos into clear and structured chapters that you can use ...

Binding Energy, Fission and the Strong Nuclear Force

Cassiopeia Project http://www.cassiopeiaproject.com/ St. Mary's Physics Online http://www.stmary.ws/highschool/physics/home/notes/modPhysics/ForcesInsideNucl...

Mass defect and Binding Energy

mass defect and binding energy and how this relates to Einstein's Famous formula.

Total Binding Energy of a Nucleus and Binding Energy per Nucleon

Topics: Calculate the total binding energy for Radon-222. The technique is to compare the total mass of the separated protons and neutrons to the mass of the...

Nuclear Binding Energy Calculation ; Mass Defect

this video uses E=mc^2 to determine the mass defect (mass difference) to calculate the nuclear binding Energy, E (energy difference). The nuclear binding ene...

Mass defect and binding energy (1)

Physics: Nuclear physics--mass defect and binding energy. This is a recording of a tutoring session, posted with the student's permission. These videos are o...

Physics - Nuclear Physics (6 of 22) Binding Energy of a Nucleus

Visit http://ilectureonline.com for more math and science lectures! In this video I will show you how to find the binding energy of a nucleus.

IB Physics: Nuclear Binding Energy

Defines the amu, and explains how the binding energy can be calculated based on the mass defect, and determines the binding energy per nucleon of Helium-4.

294502 videos foundNext > 

561 news items

 
GenomeWeb
Fri, 20 Feb 2015 09:26:15 -0800

In doing so, they identified mutations that changed the conformation of the enzyme, altering its binding energy and creating greater affinity for the drug on the Abl evolutionary pathway and less on the Src pathway. Also in Science, researchers from ...

Next Big Future

Next Big Future
Tue, 24 Feb 2015 11:33:23 -0800

Metastable Innershell Molecular State (MIMS), an innershell-bound ultra-high-energy molecule, was previously proposed to explain a ∼40% efficiency of soft-X-ray generation in ∼0.05 keV/amu nanoparticle impact on solids. Here, the MIMS model has been ...
 
MIT Technology Review (blog)
Wed, 18 Feb 2015 13:07:15 -0800

Jing and co have simulated the character of the bonds that hold it together, their binding energy, their vibrational frequencies, and the stability of the structure. And they say volleballene is clearly the most stable of all the structures that ...
 
GenomeWeb
Fri, 13 Feb 2015 07:33:45 -0800

First presented in a 2013 Nature Methods paper, NeuCode uses differences in the nuclear binding energy – the energy needed to break a nucleus up into its component nucleons – of different isotopes to label amino acids. Because every isotope has a ...

EurActiv

EurActiv
Wed, 15 Oct 2014 23:49:08 -0700

An ambitious, binding, energy efficiency target for 2030 should be backed not primarily to save energy or hit international goals, the letter said. A binding target was needed, “first and foremost to save jobs, competitiveness and the well-being” of ...

Blouin News Blogs (blog)

Blouin News Blogs (blog)
Thu, 05 Feb 2015 13:58:23 -0800

Nevertheless, many binding energy decisions are still made in London. Scotland's results speak for themselves, however, and other countries geographically fortunate enough to have wind, river, and tidal sources of energy can learn from its successes.
 
Phys.Org
Wed, 11 Feb 2015 03:25:36 -0800

"While the Higgs boson – proposed by Brout, Englert and Higgs – accounts for the masses of the fundamental particles, thereby allowing composite objects such as us to exist, the bulk of our mass comes from the binding energy of the strong interaction ...

EurActiv

EurActiv
Wed, 28 May 2014 09:46:22 -0700

Asked by EurActiv whether an energy savings goal should also be considered, Oettinger replied: “I feel that it would be appropriate to propose a binding energy efficiency target and make that proposal to the Council, and to the Parliament.” “Now more ...
Loading

Oops, we seem to be having trouble contacting Twitter

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!

Searchlight Group

Digplanet also receives support from Searchlight Group. Visit Searchlight