digplanet beta 1: Athena
Share digplanet:

Agriculture

Applied sciences

Arts

Belief

Business

Chronology

Culture

Education

Environment

Geography

Health

History

Humanities

Language

Law

Life

Mathematics

Nature

People

Politics

Science

Society

Technology

Coordinates: 42°01′50″N 93°38′54″W / 42.0305°N 93.6482°W / 42.0305; -93.6482

Ames Laboratory
Ames Lab logo.jpg
Established 1947
Research type Unclassified
Budget $30 million
Director Thomas A. Lograsso
Staff 308
Students 198
Location Ames, IA
Operating agency Iowa State University
Website Ames Laboratory

Ames Laboratory is a United States Department of Energy national laboratory located in Ames, Iowa and affiliated with Iowa State University. The Laboratory conducts research into various areas of national concern, including the synthesis and study of new materials, energy resources, high-speed computer design, and environmental cleanup and restoration. It is located on the campus of Iowa State University. It is operated for the United States Department of Energy.

In January 2013 the Department of Energy announced the establishment of the Critical Materials Institute (CMI) at Ames Laboratory, with a mission to develop solutions to the domestic shortages of rare earth metals and other materials critical for U.S. energy security.

History[edit]

1940s[edit]

In 1942, Frank Spedding of Iowa State College, an expert in the chemistry of rare earth elements, agreed to set up and direct a chemical research and development program, since called the Ames Project, to accompany the Manhattan Project's existing physics program. Its purpose was to produce high purity uranium from uranium ores. Harley Wilhelm developed new methods for both reducing and casting uranium metal, making it possible to cast large ingots of the metal and reduce production costs by as much as twentyfold. About one-third, or around 2 tons, of the uranium used in the first self-sustaining nuclear reaction at the University of Chicago was provided through these procedures, now known as the Ames Process. The Ames Project produced more than 2 million pounds (1,000 tons) of uranium for the Manhattan Project until industry took over the process in 1945.

The Ames Project received the Army-Navy ‘E’ Award for Excellence in Production on October 12, 1945, signifying two-and-a-half years of excellence in industrial production of metallic uranium as a vital war material. Iowa State University is unique among educational institutions to have received this award for outstanding service, an honor normally given to industry. Other key accomplishments related to the project:

• Developed a process to recover uranium from scrap materials and convert it into good ingots.
• Developed an ion exchange process to separate rare earth elements from each other in gram quantities — something not possible with other methods.
• Developed a large-scale production process for thorium using a bomb-reduction method.

Ames Laboratory was formally established in 1947 by the United States Atomic Energy Commission as a result of the Ames Project's success.

1950s[edit]

During the 1950s the Lab’s growing reputation for its work with rare earth metals rapidly increased its workload. As the country explored the uses of nuclear power, lab scientists studied nuclear fuels and structural materials for nuclear reactors. Processes developed at Ames Laboratory resulted in the production of the purest rare-earth metals in the world while at the same time reducing the price of the metals as much as 1,000 percent. In most cases, Lab facilities served as models for large-scale production of rare earth metals. Lab scientists took advantage of Iowa State University's synchrotron to pursue medium-energy physics research. Analytical chemistry efforts expanded to keep up with the need to analyze new materials.

Other key accomplishments from the 1950s:
• Developed processes for separating hafnium, niobium, barium, strontium, caesium and rubidium.
• Discovered a new isotope, phosphorus-33.
• Separated high-purity rare earth oxides in kilogram quantities.
• Developed a method of separating plutonium and fission products from spent uranium fuel.
• Produced high-purity yttrium metal in large quantities, shipping more than 18,000 pounds before industry took over the process.

1960s[edit]

During the 1960s the Lab reached peak employment as its scientists continued exploring new materials. As part of that effort, the Lab built a 5-megawatt heavy water reactor for neutron diffraction studies and additional isotope separation research. The United States Atomic Energy Commission established the Rare-Earth Information Center at Ames Lab to provide the scientific and technical communities with information about rare-earth metals and their compounds.

Other key accomplishments from the 1960s:
• Developed a process to produce thorium metal with a purity of 99.985 percent.
• Developed a process for producing high-purity vanadium metal for nuclear applications.
• Discovered a new isotope, copper-69.
• Conducted the first successful operation of an isotope separator connected to a reactor in order to study short-lived radioactivity produced by fission of uranium-235.
• Ames Lab Physicists succeed in growing the first large crystal of solid helium

1970s[edit]

During the 1970s, as the United States Atomic Energy Commission evolved into the United States Department of Energy, efforts diversified as some research programs closed and new ones opened. Federal officials consolidated reactor facilities, leading to the closure of the research reactor. Ames Laboratory responded by putting new emphasis on applied mathematics, solar power, fossil fuels and pollution control. Innovative analytical techniques were developed to provide precise information from increasingly small samples. Foremost among them was inductively coupled plasma-atomic emission spectroscopy, which could rapidly and simultaneously detect up to 40 different trace metals from a small sample.

Other key accomplishments from the 1970s:
• Developed a highly sensitive technique for the direct analysis of mercury in air, water, fish and soils.
• Developed a method for isolating minute amounts of organic compounds found in water.
• Developed a process for removing copper, tin and chromium from automotive scrap, yielding reclaimed steel pure enough for direct re-use.
• Developed an image intensifier screen that significantly reduced exposure to medical X-rays.
• Developed a solar heating module that could both store and transmit solar power.

1980s[edit]

In the 1980s research at Ames Laboratory evolved to meet local and national energy needs. Fossil energy research focused on ways to burn coal cleaner. New technologies were developed to clean up nuclear waste sites. High-performance computing research augmented the applied mathematics and solid-state physics programs. Ames Laboratory became a national leader in the fields of superconductivity and nondestructive evaluation. In addition, DOE established the Materials Preparation Center[1] to provide public access to the development of new materials.

Other key accomplishments from the 1980s:
• Developed a liquid-junction solar cell that was efficient, durable and non-toxic.
• Received Defense Department funding to develop nondestructive evaluation techniques for aircraft.
• Became DOE’s lead laboratory for managing the environmental assessment of energy-recovery processes.
• Developed a new method for alloying pure neodymium with iron, producing the feedstock for a widely used neodymium magnet.
• Assisted in development of Terfenol which changes form in a magnetic field, making it ideal for sonar and transducer applications.

1990s[edit]

Encouraged by United States Department of Energy, in the 1990s Ames Laboratory continued its efforts to transfer basic research findings to industry for the development of new materials, products and processes. The Scalable Computing Laboratory[2] was established to find ways of making parallel computing accessible and cost-effective for the scientific community. Researchers discovered the first non-carbon example of buckyballs, a new material important in the field of microelectronics. Scientists developed a DNA sequencer that was 24 times faster than other devices, and a technique that assessed the nature of DNA damage by chemical pollutants.

Other key accomplishment of the 1990s:
• Developed HINT benchmarking technique that objectively compared computers of all sizes, now supported at Brigham Young University's HINT site.[3]
• Improved method of high pressure gas atomization for turning molten metal into fine-grained metal powders.
• Predicted the geometry for a ceramic structure with a photonic band gap. These structures may improved the efficiency of lasers, sensing devices and antennas.
• Discovered a new class of materials that could make magnetic refrigeration a viable cooling technology for the future.
• Developed a high-strength lead-free solder.

Recent developments[edit]

The following are examples of how Ames Laboratory continues to contribute:

• Novel, platinum-modified nickel-aluminide coatings that deliver unprecedented oxidation and phase stability as bond coat layers in thermal barrier coatings, which could improve the durability of gas turbine engines, allowing them to operate at higher temperatures and extending their lifetimes.
• Research confirming negative refraction can be observed in photonic crystals in the microwave region of the electromagnetic spectrum, which moves physicists one step closer to constructing materials that exhibit negative refraction at optical wavelengths and realizing the much-sought-after superlens.
• Discovery of intermetallic compounds that are ductile at room temperature, and which could be used to produce practical materials from coatings that are highly resistant to corrosion and strong at high temperatures to flexible superconducting wires and powerful magnets.
• Development of heterogeneous catalysts whose ability to be recycled could help reduce costs for production of biodiesel fuel and eliminate waste-storage costs.
• Research on the photophysics of luminescent organic thin films and organic light-emitting diodes resulted in a novel integrated oxygen sensor and a new sensor company.
• Lead-free solder that is stronger, easier to use, stands up better in high-heat conditions, and is environmentally safe.
• A biosensor technology that helps to determine an individual’s risk of getting cancer from chemical pollutants.
• A capillary electrophoresis unit that can analyze multiple chemical samples simultaneously. This unit has applications in the pharmaceutical, genetics, medical, and forensics fields. This technology has been the basis of a spin-off business.
• Material for magnetic refrigeration that improves refrigerator efficiency by an estimated 40 percent in large-scale refrigeration units and air conditioners.
• Developed a mechanochemical process that is a solvent-free way to produce organic compounds in solid state. Being used to study new, complex hydride materials that could provide a solution for high-capacity, safe hydrogen storage needed to make hydrogen-powered vehicles viable.
• The design and demonstration of photonic band gap crystals, a geometrical arrangement of dielectric materials that allows light to pass except when the frequency falls within a forbidden range. These materials would make it easier to develop numerous practical devices, including optical lasers, optical computers, and solar cells.
• In 2013, The DOE awarded $120 million to the Ames Laboratory to start a new Energy Innovation Hub, the Critical Materials Institute, which will focus on improving the supply of rare earth elements, which is controlled by China.[4]

Ames Laboratory directors[edit]

# Director Start of term End of term
1 Frank Spedding 1947 1968
2 Robert Hansen 1968 1988
3 Thomas Barton 1988 2007
4 Alexander King 2008 2013
5 Thomas A. Lograsso (Interim) 2013

Notable alumni and faculty[edit]

Frank Spedding (B.S. 1925, M.S. 1926) (deceased), directed the chemistry phase of the Manhattan Project in World War II, which led to the world's first controlled nuclear reaction. He was Iowa State's second member of the National Academy of Sciences and the first director of the Ames Laboratory. Dr. Spedding won the Langmuir Award in 1933, Only Oscar K. Rice and Linus Pauling preceded him in this achievement. The award is now called the Award in Pure Chemistry of the American Chemical Society. He is the first to bear the title Distinguished Professor of Sciences and Humanities at Iowa State (1957). Further awards include: William H. Nichols Award of the New York section of the American Chemical Society (1952); the James Douglas Gold Medal from the American Institute of Mining, Metallurgical, and Petroleum Engineers (1961) for achievements in nonferrous metallurgy; and the Francis J. Clamer Award from the Franklin Institute (1969) for achievements in metallurgy.

Harley Wilhelm (Ph.D. 1931) (deceased), developed the most efficient process to produce uranium metal for the Manhattan Project, the Ames Process, a process still used today.

Velmer A. Fassel (Ph.D. 1947)(deceased), internationally known for developing an analytical process, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), used for chemical analysis in almost every research laboratory in the world; former deputy director of the Ames Laboratory.

Karl A. Gschneidner, Jr. (B.S. 1952, Ph.D 1957) Elected Fellow of the National Academy of Engineering in 2007, Gschneidner is acknowledged as one of the world’s foremost authorities in the physical metallurgy and thermal and electrical behaviors of rare earth materials. Additionally Gschneidner is a Fellow of the Minerals, Metals, and Materials Society, Fellow of the American Society for Materials International, and Fellow of the American Physical Society.

James Renier (Ph.D. 1955), chairman and chief executive officer of Honeywell Inc. (1988–93).

Darleane C. Hoffman (Ph.D. 1951), a 1997 recipient of the National Medal of Science, is one of the researchers who confirmed the existence of element 106, seaborgium.

John Weaver (Ph.D. 1973), named Scientist of the Year for 1997 by R&D Magazine. Weaver is currently head of the Department of Materials Science and Engineering at the University of Illinois, Urbana-Champaign.

James Halligan (B.S. 1962, M.S. 1965, Ph.D. 1967), president of Oklahoma State University (1994–present).

Allan Mackintosh, noted expert on rare-earth metals and President of the European Physical Society.

James W. Mitchell (Ph.D. 1970), named Iowa State University's first George Washington Carver Professor in 1994. He is also the winner of two R&D 100 Awards and the prestigious Percy L. Julian Research Award given by the National Organization for the Professional Advancement of Black Chemists and Chemical Engineers for innovative industrial research. Mitchell is vice president of the Materials Research Laboratory at Bell Laboratories, Lucent Technologies.

John Corbett, chemistry and Ames Laboratory, member of the National Academy of Sciences, created the first non-carbon example of buckyballs; discovered more than 1,000 new materials.

Kai-Ming Ho, Che-Ting Chan, and Costas Soukoulis, physics and Ames Laboratory, were the first to design and demonstrate the existence of photonic band gap crystals, a discovery that led to the development of the rapidly expanding field of photonic crystals. Photonic crystals are expected to have revolutionary applications in optical communication and other areas of light technology. Soukoulis is a recipient of the Descartes Prize for Excellence in Scientific Collaborative Research, the European Union’s highest honor in the field of science.

Dan Shechtman, winner of the 2011 Nobel Prize in Chemistry.

Pat Thiel, chemistry and Ames Laboratory, received one of the first 100 National Science Foundation Women in Science and Engineering Awards (presented in 1991).

Edward Yeung, chemistry and Ames Lab, first person to quantitatively analyze the chemical contents of a single human red blood cell, using a device that he designed and built; the development could lead to improved detection of AIDS, cancer and genetic diseases such as Alzheimer's, muscular dystrophy and Down's syndrome. Yeung has won four R&D 100 Awards and an Editor's Choice award from R&D Magazine for this pioneering work. He was the 2002 recipient of the American Chemical Society Award in Chromatography for his research in chemical separations.[5]

Klaus Rudenberg, physics and Ames Laboratory, 2001 recipient of the American Chemical Society Award in Theoretical Chemistry for his innovative research in the field of theoretical chemistry.

External links[edit]

References[edit]

  1. ^ "Materials Preparation Center". Ames Lab. Retrieved July 17, 2013. 
  2. ^ "Main Page". Scalable Computing Laboratory. Retrieved July 17, 2013. 
  3. ^ "HINT". Brigham Young University. Retrieved July 17, 2013. 
  4. ^ "US spots $120M for lab to tackle rare earth shortages". Networkworld.com. 2013-01-09. Retrieved 2013-01-16. 
  5. ^ "ACS Award in Chromatography". American Chemical Society. Retrieved July 17, 2013. 

Original courtesy of Wikipedia: http://en.wikipedia.org/wiki/Ames_Laboratory — Please support Wikipedia.
A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia.
27279 videos foundNext > 

Welcome to the Ames Laboratory

Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

Ames Lab 101: Single Crystal Growth

Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples...

SULI at Ames Laboratory

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

The State of the Ames Laboratory Address 2011

Alex King, director of The Ames Laboratory, discusses the budget situation, improvements at Ames Lab and infrastructure improvements during the State of the ...

Ames Lab 101: Lanthanum Decanting

Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and ot...

Ames Lab 101: VE-Suite

Ames Laboratory scientist Mark Bryden talks about virtual engineering and the advantages it gives engineers when they can "walk through" designs visually.

Ames Lab 101: Rare-Earth Recycling

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be im...

Ames Lab 101: Ultrafast Magnetic Switching

Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. M...

Ames Lab 101: Danny Shechtman Returns to the Ames Laboratory

Danny Shechtman, Ames Laboratory Scientist and winner of the Nobel Prize in Chemistry 2011, returned to the Ames Lab on February 14, 2012. During this time, ...

Ames Lab 101: Rare-Earth Magnets

Bill McCallum, Senior Scientist of the Ames Laboratory, talks about controlling the element cerium for use in rare-earth magnets, rather than the less abunda...

27279 videos foundNext > 

24 news items

 
DesMoinesRegister.com
Thu, 17 Apr 2014 09:47:51 -0700

Adam Schwartz will be the new director of the U.S. Department of Energy's Ames Laboratory. He currently serves as division leader of the Condensed Matter and Materials Division at Lawrence Livermore National Laboratory in California. Schwartz is an ...
 
Phys.Org
Sat, 05 Apr 2014 11:22:30 -0700

Two participants in the U.S. Department of Energy Office of Science's Science Undergraduate Laboratory Internship (SULI) research program at the DOE's Ames Laboratory have been awarded prestigious scholarships, one from the Barry M. Goldwater ...
 
Politico
Fri, 18 Apr 2014 07:03:45 -0700

Charleston Gazette: http://bit.ly/1ePz9RZ. — DOE's Ames Laboratory has a new director. Des Moines Register: http://dmreg.co/1hQDa8Y. — Lowe's will pay $500,000 to settle violations of lead pollution rules. AP: http://strib.mn/1hQBdJS. THAT'S ALL FOR ME.

Ecumenical News

Ecumenical News
Fri, 18 Apr 2014 11:00:00 -0700

It has also developed transient resistors and capacitors that have tested well. Montazami's team includes researchers from Iowa State, the US Department of Energy's Ames Laboratory, and Washington State University. It has focused recent research on the ...

Phys.Org

Phys.Org
Tue, 08 Apr 2014 18:30:00 -0700

Costas Soukoulis, senior scientist at the US Department of Energy's Ames Laboratory, Distinguished Professor of Physics and Astronomy at Iowa State University and associated member of IESL-FORTH in Greece, has won the 2014 Max Born Award from the ...

National Hog Farmer

National Hog Farmer
Thu, 10 Apr 2014 16:41:19 -0700

The team used a technology, invented at Ames Laboratory, called transient infrared spectroscopy (TIRS) to measure nitrate in soil and then compared those values to ones obtained using traditional soil testing. TIRS works by measuring light emissions in ...

Printed Electronics World

Printed Electronics World
Mon, 14 Apr 2014 15:52:30 -0700

... Acar and Simge Cinar, postdoctoral research associates in mechanical engineering; and Mahendra Thunga, a postdoctoral research associate in materials science and engineering and an associate of the U.S. Department of Energy's Ames Laboratory.

Phys.Org

Phys.Org
Thu, 27 Mar 2014 21:30:00 -0700

What makes the work by Ames Laboratory physicist Alex Travesset and graduate assistant Chris Knorowski significant is that they have characterized how these nanocubes form crystalline and liquid crystalline structures. Their work was published in the Dec.
Loading

Oops, we seem to be having trouble contacting Twitter

Talk About Ames Laboratory

You can talk about Ames Laboratory with people all over the world in our discussions.

Support Wikipedia

A portion of the proceeds from advertising on Digplanet goes to supporting Wikipedia. Please add your support for Wikipedia!